
Mobile Netw Appl (2017) 22:153–160
DOI 10.1007/s11036-016-0738-0

Cost-Effective Service Provisioning for Hybrid Cloud
Applications

Fangming Liu1 ·Bin Luo1 ·Yipei Niu1

Published online: 17 May 2016
© Springer Science+Business Media New York 2016

Abstract The workloads of social computing are tremen-
dous, bursty and unpredictable. A hybrid cloud, which
combines a private cloud and a public cloud, is a promising
solution to processing the workloads. For most corporations,
they leverage one public cloud. However, with fierce com-
petition among public cloud providers, public cloud services
change frequently, which may lead to service unavailability
and a less cost-effective hybrid cloud solution. As a result,
leveraging multiple public clouds in the hybrid cloud is a
potential solution. In this paper, we identify such a prob-
lem in current hybrid cloud and analyze the necessity of
load balancing for hybrid cloud applications. Focusing on
cost minimization and performance guarantee, we propose a
Least Cost per Connection (LCC) algorithm so as to choose
the most cost-effective clouds along with adapting changes
among multiple public clouds. The simulation results show
that our solution can significantly decrease the outsourc-
ing cost as well as guarantee Quality of Service (QoS) of
applications.

Keywords Hybrid cloud · Multi-cloud · Load balancing ·
Cost-effective

� Fangming Liu
fmliu@hust.edu.cn

1 Key Laboratory of Services Computing Technology and
System, School of Computer Science and Technology,
Huazhong University of Science and Technology, Hubei,
China

1 Introduction

Social computing, which supports social network services,
such as YouTube, Facebook, Whatsapp and so on, has
become increasingly important. Dealing with the workloads
generated by social networking services is challenging.
For example, news feed in Facebook, which updates the
news from people that you follow, includes various types
of contents. On the one hand, huge amounts of users are
using Facebook and interacting with each other simultane-
ously, which generates tremendous workloads. On the other
hand, the workloads are closely related to users’ daily lives.
Hence, the workloads vary with time, which may make the
private cloud of an IT corporation overload at noon yet idle
at midnight.

The private cloud, which is supported by dedicated dat-
acenters or server clusters, can provision enhanced security
and ultimate control. However, the private cloud has a lim-
ited capacity and low scalability. When workloads increase,
it is difficult to address the overload problem with the
private cloud. As the public cloud can provision elastic
computing resources. It can help the private cloud process
the excessive workloads flexibly with low costs. Hence, a
hybrid cloud, which combines a private cloud and a pub-
lic cloud, is a promising solution to processing the bursty
and tremendous workloads generated by social applications.
The state of the cloud report from RightScale points out that,
among all the enterprise respondents, 55 % of them expect
to use hybrid clouds [5].

However, for most corporations, they deploy their appli-
cations on single public cloud. First, cloud computing
platforms sometime breakdown and update bug, which
may influence their business. Second, cloud providers offer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-016-0738-0&domain=pdf
mailto:fmliu@hust.edu.cn

154 Mobile Netw Appl (2017) 22:153–160

discount to attract users and occupy cloud computing mar-
ket. For example, the price of AWS drops 12 times in
2013 while Google Compute Engine [2] made a cumulative
reduction of 38 percent in prices from January to October in
2014. When the price drops, deploying applications in sin-
gle cloud makes it difficult to switch to other providers for
lower price. Third, since more corporations join in the cloud
market, cloud users are willing to avoid provider lock-in.
As a result, deploying applications in multiple public clouds
can contribute to obtaining a more cost-effective and stable
hybrid cloud solution.

When leveraging multiple public clouds, we face the fol-
lowing challenges. First, since cloud users can leverage mul-
tiple clouds, it is challenging to distribute workloads among
private and public clouds so as to obtain a cost-effective
solution. Second, as cloud computing platforms sometime
breakdown or update, it may lead to service unavailability or
performance degradation. Such maintenance makes it more
difficult to derive a cost-effective solution. Third, cloud
computing price changes with time. Cloud users always
want to use the most cost-effective cloud products. Deploy-
ing applications on unsuitable cloud products may cost more
money and make applications inefficient.

To address these problems, we propose a cost-effective
service for hybrid cloud applications, which selects the
best public cloud for outsourcing and adapts cloud price
changes dynamically, along with provisioning global load
balancing. The system uses a two-tier load balancing mech-
anism, provisioning virtual machine (VM) and cloud level
load balancing. The load balancing problem [8] for hybrid
cloud applications is different from the cloud selection
problem. Heterogeneous workload characteristics as well
as divergent cloud instance types complicate the problem
of identifying the best suitable cloud provider and instance
for a specific application. Furthermore, a cloud user may
have several applications and every application has many
choices on cloud selection, which makes the scheduling
more complex. The system firstly chooses the best instance
on each cloud for certain applications using CloudCmp
[6]. Then the system uses the proposed Least Connection
per Cost (LCC) algorithm to distribute job requests among
public clouds. At last, the system scales up or down auto-
matically according to the price and performance of each
cloud.

In this paper, we proposed a cost-effective service pro-
visioning system for hybrid cloud applications, which pro-
vides functions as follows:

1. guaranteeing the private cloud resource use first;
2. selecting the best public cloud for out-sourcing accord-

ing to the request type;

3. adapting dynamically cloud price changes;
4. adding or removing cloud provider at will;
5. provisioning global load balancing.

The remainder of this paper is organized as follows.
In Section 2, we introduce the system architecture and
design objectives. Section 3 provides detailed description of
implementation principles and proposes LCC job schedul-
ing algorithm. Section 4 introduces a series of simulation
experiments to test our system functions and performance.
Section 5 provides an overview of related work. Finally, we
conclude our paper and provide future works in Section 6.

2 Design objectives

This system is designed to help the hybrid cloud users provi-
sion cost-effective services, especially for those who deploy
multiple public clouds. Based on the fact that different types
of applications require different computing resources, we
classify all the applications into three representative types
roughly:

* CPU-intensive application. In these applications, CPU
resource is more eagerly needed than other comput-
ing resource. For example video processing, scientific
computing and so on.

* Memory-intensive application. High IO throughput
application such as large Map-Reduce tasks which
depend on sufficient memory for data shuffling.

* Disk-intensive application. NoSQL database (e.g., Cas-
sandra, MongoDB) or Distributed File System (e.g.,
HDFS) have high demand on storage.

Our design prefers processing workloads in the private
cloud, and outsourcing excessive workloads to the public
clouds. Since prices and performance of public clouds vary
from cloud providers, we need to maintain high quality ser-
vices as well as save cost. Before the load balance system
start working, we select the most suitable type of instances
on each cloud in advance for the application. Since Li et al.
[6] compare VMs of multiple cloud providers so as to find
out which are the most suitable.

Figure 1 shows an overview of load balance system
design for hybrid cloud applications. First, cloud users
need to register their applications on the load balancer
with a unique application id and provide detailed informa-
tion of requested resource. Second, through administrating
an application-cloud mapping table, the system selectively
adds a private cloud and public clouds for certain appli-
cations.We deploy the application with cloud agent and
generate a virtual machine template on the most suitable

Mobile Netw Appl (2017) 22:153–160 155

Fig. 1 Overview of load
balance system design for a
hybrid cloud

Public
Cloud C Cloud D

…VM VM VM VM

Cloud BCloud A
VM VM VM VM

Private

request

administrate
Load Balancer

Job3

Job1 Job2
Job1

Job2 Job2...

Job1
System Architecture

instance type. Cloud agent starts to collect and feedback the
cloud load information to load balancer periodically.

The load balancer receives feedbacks and updates the pri-
ority of each cloud based on our load balance algorithm.
Here the cycle length depends on the job request arrival rate.
When the load balancer receives a batch of job requests,
it checks the priority of each cloud and dispatches the job
requests to the most cost-effective clouds.

Cost-effective Due to the unpredictable workloads, it’s
hard for a private cloud to predict an exact amount of hard-
ware resources. As such, the private cloud is not capable of
processing such immense workloads, and the public clouds
can satisfy the requirements of high capacity and scalabil-
ity. Considering the variety of cloud providers, users want
to add or remove a cloud for their applications freely. When
users deploy their applications on multiple clouds, how to
choose the most cost-effective clouds becomes a critical
problem.

One reason stops users to use public cloud is the high
cost to afford. Many enterprises would rather struggle for
building their private cloud other than totally move their
applications onto public cloud. However, it’s hard for a
private cloud procure a known amount of hardware and soft-
ware. Even more, there will inevitably be IT accidents or
flash crowds like The Shopping Day, private cloud can’t
meet such unforeseen emergency. Hybrid cloud load bal-
ancer must provision cost-effective service to solve this
problem. For the sake of cloud users, we desire to add or
delete a cloud for a certain application at will when we don’t
think it cost-effective. Therefore, which clouds are more
cost-effective for the current application become a problem.

In this paper, how much a job request costs is taken as
the measurement of cost-effectiveness (CE ratio for short).
For example, if the price of a VM of a cloud provider is P ,
and the VM can process N job requests per second, the CE
ratio equals P

N
. The number N is hard to figure out through

calculation, so we use measurement tools of Cloudcmp to
monitor it.

Flexibility With rapid development of cloud computing
market, services provisioned by public cloud providers
change quite frequently. As such, cloud users need to change
their strategies of leveraging public clouds.

In order to achieve this goal, the design of the system
is guided by the asynchronous message-driven paradigm
through RESTful design principle. We use RESTful API
to reduce the interdependency of tightly coupled interfaces,
generally lowering the complexity of integration.

Specifically, the system allows cloud users to choose on
which clouds to deploy their applications, which leads to a
many-to-many relationship.

Global load balance Users’ applications are deployed on
multiple clouds. As such, we need to ensure global load bal-
ancing, so as to provision cost-effective services and make
the best use of cloud resources we’ve bought.

Since load information collected from other clouds is
transmitted via the Internet, the transmit latency must be
low. We use short TCP connections for immediate rein-
forcement. To reduce the number of messages, we abstract
a cloud as an unit to distribute workloads among clouds.
For load balancing among VMs, each cloud can address it.

156 Mobile Netw Appl (2017) 22:153–160

Table 1 Key parameters

Notation Definition

λ(t) Average arrival rate of requests during the

t th time slot

d(t) Average service rate during the t th time slot

ηi(t) The value of priority associated with each

cloud during t th time slot

um mth cloud of public clouds deployed in the

hybrid cloud

rm mth cloud of private clouds deployed in the

hybrid cloud

σu Upper threshold of scaling up

σd Lower threshold of scaling down

Ci(t) the current number of connections on each

cloud i during t th time slot

Mi(t) The job request service rate of each VM in

a cloud during the t th time slot

Pi(t) The price of selected instance on cloud i

during the t th time slot

The low-level quality of service is guaranteed by the service
level agreement of cloud providers (Table 1).

3 System model

In this section we specifically describe how this system
scheduling jobs and leveraging the auto scaling service for
resource reallocation.

3.1 Job scheduling & resource allocation decoupling

Job scheduling and resource allocation are the two main
tasks of load balancing. Job scheduling is highly required
on bandwidth delay, while resource allocation is closely
related to cost. Based on the characteristics of two different
tasks, we discrete the job scheduling module and resource
management module from logic view. Specifically, the job
scheduling module only takes responsibility of receiving
and dispatching job requests while resource allocation mod-
ule takes charge of monitoring the cloud resource usage and
decides on when to scale up or down.

3.2 Cloud-level load balancing & VM-level load
balancing decoupling

In our system, we adopt a two-level hierarchical load bal-
ancing architecture, i.e., a cloud level and a VM level. On

the cloud level, we take the cloud as an unit of scheduling
object as shown in Fig. 1. On the VM level, we use cloud
back-end load balancing services for job distribution among
VMs. Almost all the public cloud providers provision load
balancing services within their clouds. For example, Open-
stack [4] integrates LBaaS (Load-Balancing-as-a-Service)
into Neutron component. LBaaS allows cloud users to scale
their applications, detect unhealthy VM instances, balance
loads across regions, route traffic to the closest VM and
so on.

3.3 Centralized management

Cloud agent is used to sent cloud information back to the
load balancer. We add a heartbeat mechanism to report the
cloud health status periodically.

3.4 Algorithm

3.4.1 Cloud capability measurement

Here we consider two sets of cloud resources, i.e., PUB and
PRI. Let PUB be the set of public clouds, which is denoted
as {u1, u2, ..., um}. Moreover, let PRI be the set of the private
cloud, which is denoted as {r1, r2, ..., rn}. Furthermore, we
set the resource parameters{cpu, mem, disk, net}.

Mi(t) = min{λ
CPU
i (t)

dCPU
i

,
λMEM

i (t)

dMEM
i

,

λDISK
i (t)

dDISK
i

,
λNET

i (t)

dNET
i

} (1)

Equation 1 figures out the job request service rate of each
VM in a cloud.

3.4.2 Job scheduling

We denote the current number of connections on each cloud
as Ci(t). And the price of selected instance on each cloud is
denoted by Pi(t). Furthermore, the value of priority of each
cloud is denoted as ηi(t).

ηi(t) = Mi(t) − Ci(t)

Pi(t)
. (2)

We sort the priority obtained based on Eq. 2 of each
cloud, and record the priority list in configuration files.
When a job request arrives, the load balancer will select the
cloud which has the maximum priority to server the request.

Mobile Netw Appl (2017) 22:153–160 157

If the heartbeat packet from the preferred cloud does not
arrive in time, the preferred cloud will be the second one.
The detailed algorithm is described as Algorithm 1.

3.4.3 Cloud scaling

We set two thresholds for scaling up and down with a
lower bound and an upper bound, denoted as σl and σu,
respectively.

σi(t) = max{λ
CPU
i (t) − ∑N(t)

n=1 dCPU
in

λCPU
i (t)

,

λNET
i (t) − ∑N(t)

n=1 dNET
in

λNET
i (t)

,

λMEM
i (t) − ∑N(t)

n=1 dMEM
in

λMEM
i (t)

,

λDISK
i (t) − ∑N(t)

n=1 dDISK
in

λDISK
i (t)

} (3)

We use Eq. 2 to calculate the priorities of public clouds.
Here, we use Eq. 3 to get the resource usage of the current
cloud in simulation experiments. During each time slot, the
load balancer checks whether each cloud needs to adjust its
scale. In real world, cloud provider provisions API to get the
states of cloud resources, which is much preciser. Algorithm
2 describes the resource allocation process.

3.5 Discussion

In this section, we design an LCC load balancing algorithm
to implement job scheduling. This problem is an NP-hard
optimization problem. To get the optimization solution may
spend a lot of time. Considering in a large-scale distributed
network environment, network delay plays a important role
in system performance.

4 Experiment

In this section, we conducted a series of simulation experi-
ments from different perspectives. The results demonstrate
that our load balance mechanism for hybrid cloud applica-
tion could reach cost-effective, meanwhile it also provides
information on the pros and cons.

4.1 Data preparation

Requests: We first construct the realistic job requests
according to the data traces obtained from Google data cen-
ter, which include the job arrive/leave time and resource cost
information. Then we simulate another three specific appli-
cation requests which have high demand on CPU, memory,
and disk respectively.

Clouds: As the requests vary in Google trace, requests
should be sent to the suitable cloud for handling. So using
multiple public clouds is better than single public cloud.
As an instance’s startup need some delay, using multi-cloud
can somehow reduce the delay. We use three public clouds
and two private clouds to construct a hybrid cloud. The
parameters of each instance on each cloud is set according

158 Mobile Netw Appl (2017) 22:153–160

Table 2 Parameters of public clouds

Cloud ID CPU MEM DISK Price

Cloud 1 8 8 20 0.628

Cloud 2 2 8 20 0.375

Cloud 3 2 3 80 0.453

to the typical instance types of Amazon EC2 and Google
Computing Engine.

We list the parameters of public clouds in Table 2. In the
price column, the pricing details are obtained in providers’
websites. We also list the resource demand of the three types
of jobs used in experiments in Table 3.

4.2 Experiment results

4.2.1 Function test

In this experiment, we show functions that the load balancer
can reach. The system able to guarantee the private cloud
resource use first, keep private cloud at a higher resource
utilization. The system will choose most suitable cloud for
out-sourcing according to the request type. Further more,
it is responsible to the price changes keeps global load
balanced.

Figure 2 demonstrates respective CPU usage of the pri-
vate and public clouds in a hybrid cloud. As shown in Fig. 2,
the average CPU usage of VMs in the private cloud stays
above 0.8 in the whole process except five short time peri-
ods. Such a phenomenon indicates that our algorithm works
based on our design concept. As mentioned in Section 3, to
maintain the least cost, we use the private cloud as much as
possible while outsource excessive workloads to the public
cloud. Hence, we need to ensure the average CPU usage of
VMs in the private cloud stays in a range stably. Meanwhile,
the average usage of VMs in the public cloud fluctuates
wildly, which is led by bursty workloads. Although the
workloads is bursty, the CPU usage of private cloud is sta-
ble, which further demonstrates the effectiveness of our
algorithm.

Figure 3 demonstrates the trends of the number of run-
ning VMs in three deployed clouds under different types of
workloads. In the first time period, the workloads are CPU-
intensive. The scale of Cloud 1 increases to the largest for it

Table 3 Requirement of resources

APP CPU MEM DISK

CPU APP 0.65 0.2 1.5

MEM APP 0.2 0.68 2.5

DISK APP 0.2 0.18 4.5

4000 4500 5000 5500 6000 6500 7000 7500 8000
0

0.2

0.4

0.6

0.8

1

1.2

Time Slots

C
P

U
 U

sa
ge

Private Cloud
Public Cloud

Fig. 2 CPU usage of the private and public clouds in a hybrid cloud

is good at processing CPU-intensive workloads. Then, when
the type of workloads switch to the memory-intensive type,
the scale of Cloud 1 goes down while the scale of Cloud
2 ramps up to the largest. Finally, the same trend can be
observed in the third time period. As a result, our algorithm
is sensitive about the changes in types of workloads and can
adjust the scales of public clouds based on it.

Figure 4 shows the scales of public clouds when their
prices change. In Fig. 4, the scale of Cloud 2 increases after
its price goes down. Meanwhile, when the price of Cloud
1 increases, its scale decreases a little. The effects indicate
that our algorithm can adapt the price volatility and choose
the cost-effective clouds adaptively.

4.2.2 Performance analysis

For comparisons, we use random algorithm which is most
commonly used on load balance problems.

Figure 5 plots the effects brought by different strategies
of deploying the public cloud. In Fig. 5, the average delay
processed by single cloud is shorter than that processed by
multiple clouds. Furthermore, the cost of deploying single
cloud is less than that of deploying multiple clouds. Hence,
by deploying multiple public clouds, we can provision high
quality services as well as saving cost. Meanwhile, to show
the effectiveness of LCC, we compare LCC to a random
strategy. As plotted in Fig. 5, the delay of the random strat-
egy is longer than LCC’s while the cost is more than LCC’s.

0 2000 4000 6000 8000 10000

1

2

3

4

5

6

Time Slots

N
um

be
r o

f I
ns

ta
nc

es

Cloud 1
Cloud 2
Cloud 3

Fig. 3 Resource requirement trace of CPU-intensive, memory-
intensive, and disk-intensive jobs

Mobile Netw Appl (2017) 22:153–160 159

Before After
0

1

2

3

4

5
A

V
G

 N
um

be
r o

f I
ns

ta
nc

es

Cloud Price Varys

Cloud 1
Cloud 2
Cloud 3

Fig. 4 The price of Cloud 1 increases 0.1 dollar while the price of
Cloud 2 decreases 0.1 dollar during the optimization

As a result, our algorithm works well in the hybrid cloud
environment.

Figure 6 shows different scales of public clouds in the
hybrid cloud. As shown in Fig. 3, the average number of
VMs in Cloud 1 is the largest when the workloads are CPU-
intensive. Then, the number in Cloud 2 is the largest when
the workloads are memory-intensive while the number in
Cloud 3 is the largest when the workloads are disk-intensive.
Such phenomenon indicates that our algorithm is aware
of the types of workloads. Furthermore, our algorithm can
adjust the scales of deployed clouds based on different types
of workloads and make the best use of the public clouds.

Figure 7 plots the effects brought by different numbers of
public clouds. As shown in Fig. 7, when the number of pub-
lic clouds increases from 1 to 4, the values of latency and
cost fall sharply. When deploying more clouds, our algo-
rithm can adjust the respective scales as well as distribute
workloads to provision cost-effective services. We have
thought that the principle was “the more choices, the better”,
adding cloud provider only bring less cost or not, no higher.
Because the load balancer can choose whether to use the
cloud or not. However, when the number of public clouds

Single Multiple
0

0.5

1

1.5

LCC

D
el

ay

Single Multiple
0

2

4

6 x 104

LCC

C
os

t

LCC Random
0

0.5

1

1.5

Algorithm

D
el

ay

LCC Random
0

2

4

6 x 104

Algorithm

C
os

t

Fig. 5 Comparison test on different public clouds and comparison test
between LCC and random algorithm

CPU_APP MEM_APP DISK_APP
0

2

4

6

8

10

A
ve

ra
ge

 N
um

be
r o

f I
ns

ta
nc

es

Cloud 1
Cloud 2
Cloud 3

Fig. 6 The average number of instances which three applications use
on three different public clouds

increases from 4 to 7, the latency decreases slightly while
the cost increases markedly. Since we need to maintain the
least scale of each public cloud, deploying more clouds does
not contribute to cost-saving. Furthermore, the capacity of
hybrid cloud is too large to improve performance.

5 Related work

Load balancing problem [8] can be divided into two
sub-problems: job request scheduling and dispatching and
migration of resource. The task scheduling algorithms can
be broadly classified into two types: static algorithms and
dynamic algorithms. The commonly used algorithms con-
tain randomized, round robin, min-min scheduling algo-
rithm, opportunistic load balancing and so on.

Traditional cloud load balancing service is one of tools
which helps cloud providers to meet the QoS requirements
of cloud users, and maximize provider’s profit by opti-
mizing the resource utilization. However, in recent years,
especially when the hybrid cloud becomes popular, more

1 2 3 4 5 6 7
3.6x104

3.8x104

4.0x104

4.2x104

4.4x104

4.6x104

Cost
Latency

Public Clouds

C
os

t

0.9

1.0

1.1

1.2

1.3

1.4

La
te

nc
y

Fig. 7 Measurement on the global average cost and delay under the
number of public clouds varying form 1 to 7

160 Mobile Netw Appl (2017) 22:153–160

and more cloud users want to have more initiatives on
controlling their cloud resources.

Li et al. [6] focus on classifying and measuring the
typical services which public clouds commonly provide.
They develop a benchmark tool called CloudCmp to help
cloud users comparing different clouds’ performance and
price. Nevertheless, the cloud price may change, Cloud-
Cmp cannot respond to real-time fluctuation of the price.
Since current public cloud providers provide various types
of instances [1], cloud users are facing the dilemma of hard
choices [6]. Zhao et al. propose an online algorithm for joint
VM pricing, job scheduling and server provisioning in a
cloud supported by geo-distributed datacenters in [12].

[11] gives out a hybrid cloud model which uses a work-
load factoring scheme to separate base workloads and flash
crowd workloads. It proactively pushes the flash crowd
workloads onto the public cloud and leaves rest in the pri-
vate cloud, so as to achieve resource efficiency and reduce
data replication. The authors design an online algorithm for
optimal request distribution to meet cloud bursting for the
hybrid cloud.

Based on former works [6, 12], we propose a two-
tier load balancing mechanism which provisions VM-level
cost-effective load balancing for hybrid cloud applications,
which brings considerable benefit and performance for
cloud users.

With respect to studies on managing the performance
overhead of VMs, part of the work in [9] summarizes it
under diverse scenarios of the IaaS cloud. Li et al. in [6]
focus on classifying and measuring the typical services
which IaaS public clouds provide. Complementary to [9]
and [6], we deal with performance issues of multiple pub-
lic clouds in hybrid cloud scenarios. In terms of addressing
network performance, Yi et al. take a close look at the
unique challenges in building a network highway for big
data in [10]. Complementary to [10], we consider network
performance of web services when scheduling requests.

[11] gives out a hybrid cloud model which uses a work-
load factoring scheme to separate base workload and flash
crowd workload. Furthermore, [7] models e-commerce web
services and proposes an online algorithm to address the
load balancing problem under flash crowds in hybrid cloud
scenarios. Inspired by [7] yet different from it, we address
the load balancing problemwith considering multiple public
clouds.

6 Conclusion

This paper proposes a Least Cost per Connection (LCC)
load balancing algorithm for hybrid cloud applications,
which helps provide cost-effective services. Moreover, we
design a system prototype for simulation experiments. The
results show that our system can guarantee the private cloud
usage as well as achieve the goal of high performance with
low cost. Compared with the single cloud strategy, the cost
and latency of our system decrease 30.2 and 10.1 percent,
respectively. This system can be integrated into the hybrid
cloud management platform like CloudForms, ManageIQ
and so on. Other works we are doing now are making this
system a plug-in feature into ManageIQ [3].

Acknowledgments The research was supported by a grant from the
National Natural Science Foundation of China (NSFC) under grant No.
61520106005.

References

1. Auto Scaling. http://aws.amazon.com/autoscaling/
2. Google Computing Engine. https://cloud.google.com/compute/

pricing
3. ManageIQ Open Source Project. http://manageiq.org/
4. OpenStack. http://www.openstack.org/
5. (2015) State of the cloud report. Report
6. Li A, Yang X, Kandula S, Zhang M (2010) Cloudcmp: Comparing

public cloud providers. In: Proc. of IMC 2010
7. Niu Y, Luo B, Liu F, Liu J, Li B (2015) When hybrid cloud

meets flash crowd: Towards Cost-Effective service provisioning.
In: Proc. of IEEE INFOCOM

8. Shaw S, Singh A (2014) A survey on scheduling and load bal-
ancing techniques in cloud computing environment. In: Computer
and Communication Technology (ICCCT), 2014 International
Conference on, pp 87–95. doi:10.1109/ICCCT.2014.7001474

9. Xu F, Liu F, Jin H, Vasilakos A Managing performance overhead
of virtual machines in cloud computing: A survey, state of the
art, and future directions. Proceedings of the IEEE 102(1), 11–
31

10. Yi X, Liu F, Liu J, Jin H (2014) Building a network highway
for big data: architecture and challenges. Netw, IEEE 28(4):5–
13

11. Zhang H, Jiang G, Yoshihira K, Chen H (2014) Proactive work-
load management in hybrid cloud computing. IEEE Trans Netw
Serv Manag 11(1):90–100

12. Zhao J, Li H, Wu C, Li Z, Zhang Z, Lau F (2014) Dynamic pric-
ing and profit maximization for the cloud with geo-distributed
data centers. In: INFOCOM, 2014 Proceedings IEEE, pp 118–
126

http://aws.amazon.com/autoscaling/
https://cloud.google.com/compute/pricing
https://cloud.google.com/compute/pricing
http://manageiq.org/
http://www.openstack.org/
http://dx.doi.org/10.1109/ICCCT.2014.7001474

	Cost-Effective Service Provisioning for Hybrid Cloud Applications
	Abstract
	Introduction
	Design objectives
	Cost-effective
	Flexibility
	Global load balance

	System model
	Job scheduling & resource allocation decoupling
	Cloud-level load balancing & VM-level load balancing decoupling
	Centralized management
	Algorithm
	Cloud capability measurement
	Job scheduling
	Cloud scaling

	Discussion

	Experiment
	Data preparation
	Requests:
	Clouds:

	Experiment results
	Function test
	Performance analysis

	Related work
	Conclusion
	Acknowledgments
	References

