
When Hybrid Cloud Meets Flash Crowd: Towards
Cost-Effective Service Provisioning

Yipei Niu1 Bin Luo1 Fangming Liu∗1 Jiangchuan Liu2 Bo Li3
1Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology, China.
2Simon Fraser University, Canada 3The Hong Kong University of Science and Technology, Hong Kong.

Abstract—With rapid development in online shopping, e-
commerce websites are facing intensive user requests from an
increasing number of customers. Especially in promotion seasons,
these websites may encounter flash crowds which pull heavy
pressure to private infrastructure and even make the website
unavailable. Such severe flash crowds can be addressed by
leveraging hybrid cloud solution, which relieves workloads of
the private cloud by offloading the excessive user requests to the
IaaS public cloud. However, the bursty and fluctuation of flash
crowds bring challenges to distributing user requests with targets
of delay-minimizing and cost-saving. In this paper, we apply
the queueing theory to evaluate the average response time and
explore the tradeoff between performance and cost in the hybrid
cloud. By taking advantage of Lyapunov optimization techniques,
we design an online decision algorithm for request distribution
which achieves the average response time arbitrarily close to the
theoretically optimum and controls the outsourcing cost based
on a given budget. The simulation results demonstrate that in
a hybrid cloud, our solution can reduce the cost of e-commerce
services as well as guarantee performance when encountering
flash crowds.

I. INTRODUCTION

Recently, e-commerce websites, which provision cheaper
commodities and instant shopping, have become prevalent in
our daily lives. In consequence of attracting sale discount, e-
commerce websites see surges in page visits and deals during
promotion seasons. Based on the statistics data of Double
Eleven Shopping Festival in 2012, Alibaba, the biggest e-
commerce provider in China, claimed that its website encoun-
tered a spike of over 13,000 request orders per second [1],
which is much larger compared to the workloads in normal
days. Such a large scale of page visits and bill transactions
will definitely bring considerable profit of advertising and sale.
For instance, on November 11th 2013, Taobao, the largest e-
commerce website in China, witnessed a record that total sale
reached amazing 5.7 billion USD in 24 hours [2]. Moreover,
the sale of Double Eleven promotion contributes more than
half of the annual revenue (USD 7.5 billion) of Alibaba. In
short, it is critical for an e-commerce website to withstand
flash crowds, in which there could be a much larger number
of customers visiting the website and dealing with merchants
simultaneously in a short period of time.

Under the severe flash crowds, a private cloud, which
is supported by dedicated on-premise infrastructure, has to
maintain a large number of TCP connections and retrieve

∗The Corresponding Author is Fangming Liu (fmliu@hust.edu.cn). The
research was support in part by a grant from National Basic Research Program
(973 program) under grant No.2014CB347800.

various types of static files for web page presentation. At
the same time, it also needs to process a tremendous amount
of queries for dynamic data. As a result, it is hard for the
website to handle the workloads on time with the limited local
resources in the private cloud. Yet a considerable amount of the
requests are related to confidential information of users, e.g.,
the account number of credit card, the password and so on; as
a common practice, these should be processed by the private
cloud to ensure data security. On the other hand, connected
by a dedicated tunnel, for instance, AWS Direct Connect [3],
a private cloud can outsource the excessive workloads to an
IaaS public cloud. A public cloud, for instance, Amazon EC2,
which provisions elastic and instant computing resources, can
adjust its capacity based on users’ computing requirements.
As shown in Fig. 1, requests come from thousands of users
who pose waves of workloads to the e-commerce website. The
requests will be transmitted to the private cloud; however, the
private cloud is unable to handle such severe flash crowds.
As a result, the excessive requests will be redirected to the
public cloud, e.g., Amazon EC2, via a dedicated tunnel, e.g.,
the AWS Direct Connect.

AWS Direct Connect

Private Cloud Public Cloud

VMs

Flash Crowd

Load Balancer

Fig. 1. Overview of e-commerce website deployed in hybrid cloud

A hybrid cloud, which contains a private cloud and a public
cloud, offers a potentially ideal solution to deal with flash
crowds, particularly for e-commerce websites. Fully exploring
the concept of “owning the base and renting the peak” [4]
however remains challenging in practice. First, due to the
bursty and fluctuation of flash crowds, it is difficult for an
e-commerce website to predict the exact workloads of next
second; that is, the e-commerce website is blind about the
workload distribution. Such unpredictability makes it challeng-
ing to leverage a hybrid cloud in a cost-effective way. Second,
for an e-commerce website, performance must come in the first
place. As a result, how to distribute workloads to enable the
e-commerce website to provision the best services is critical.

2

On the other hand, how to distribute workloads to indicate
the public cloud to scale up or down to a proper capacity
also faces great challenges. Third, when provisioning high
quality services, the outsourcing cost spent on deploying the
public cloud and the tunnel must be carefully controlled. In
conclusion, it is a challenging problem for an e-commerce
website to distribute workloads between the private and the
public clouds so as to provision cost-effective services in the
hybrid cloud.

In this paper, we systematically examine the challenges
when using a hybrid cloud to accommodate flash crowds. We
present a comprehensive analytical framework that captures
the essentials of the interplay among the different modules in
a hybrid cloud system for e-commerce. By taking advantage of
Lyapunov optimization techniques, we design a cost-effective
online algorithm (CEOA) for request distribution. The pro-
posed online algorithm makes real time decision on workloads
distributing and virtual machine (VM) scaling without a priori
knowledge of future workload arrival. It achieves the average
response time arbitrarily close to the theoretically optimum
and controls the outsourcing cost based on a given budget.
Our trace-driven simulation results demonstrate that, under the
hybrid cloud scenario, our solution can reduce the outsourcing
cost as well as provision high quality services when encoun-
tering flash crowds.

II. SYSTEM MODEL

A. E-commerce Web Application

Public CloudTunnel

...

...

...

l

l
V

l
R l

U

m
V

Nm
U

m
R

Private Cloud

LB

Fig. 2. The model of e-commerce website in hybrid cloud based on the
queueing theory

Modern e-commerce websites mostly involve three tiers,
namely, a front-end tier, a business-logic tier and a back-
end tier. The front-end tier is deployed by web servers (e.g.,
Apache) that are responsible for receiving HTTP requests and
retrieving static files. The business-logic tier implements key
functionalities of the website. The back-end tier processes
queries and transactions of the database [5][6]. It has been
shown that such a multi-tier architecture can be abstracted as
a single tier for performance analysis [6]; such an abstraction
captures the essential functions of e-commerce websites, and
facilitates our study on distributing flash crowds between the
private cloud and the public cloud.

Like in previous studies, in the single-tier architecture
website, we assume that requests arrive at the website as a
Poisson process. The time interval between two requests that
are served is assumed to be exponentially distributed [7], so
that we can take the M/M/1 queue [8] to model how each part
of the hybrid cloud functions [6]. As a result, we can estimate
the average delay of serving requests, i.e., the average response
time, including service time and waiting delay.

TABLE I. KEY PARAMETERS

Notation Definition

λ(t) Average arrival rate of requests during the tth time slot

µ(t) Average service rate during the tth time slot

Pn Probability that the queueing system contains n requests

η(t) Proportion of total requests assigned to the public cloud (λ
R(t)
λ(t)

)

αu Upper threshold of scaling up

αd Lower threshold of scaling down

α(t) Average CPU utilization during the tth time slot

S(t) Number of launched or removed EC2 instances in the scaling action

N(t) Number of running EC2 instances in service during the tth time slot

D(t) Average delay of serving requests in a hybrid cloud

F (t) Total cost of deploying hybrid cloud service

XU,V,R Parameter X of the public cloud(U), the private cloud(V), and the
tunnel(R)

1) Modeling the Public Cloud: In public cloud market,
there are many public cloud providers, whose computing
resources vary from each other. For instance, Amazon EC2
allows users to rent VMs on which to run their own applica-
tions. Amazon EC2 allows scalable deployment of applications
by providing a web service through which a user can boot
an Amazon Machine Image to create a VM called “EC2 in-
stance”, containing any software desired. Rackspace [9] public
cloud provisions a scalable, reliable, high-performing cloud
environment, too. Specifically, all the softwares of Rackspace
are developed by an open source project named “OpenStack”,
which is a very popular framework. Moreover, there are also
some other cloud providers, such as Windows Azure [10],
VMWare vCloud Hybrid Service [11] and so on.

In this paper, we take Amazon EC2 as a representative
of public clouds to provision elastic and instant computing
services of the hybrid cloud. Amazon EC2 is characterized
by its auxiliary service named AWS Auto Scaling [12] that
can adjust the number of running EC2 instances automatically.
AWS Auto Scaling can monitor various types of performance
metrics of running instances, for example, CPU cycle utiliza-
tion. Based on the value of the monitored metric, AWS Auto
Scaling decides whether to adjust the number of the running
EC2 instances. Before applying AWS Auto Scaling, users need
to set a series of conditions and a scaling policy in advance.

First, Amazon EC2 claims that the scaling action mustn’t
happen too frequently, so the least time interval between two
consecutive scaling actions can be configured. Given the time
interval between two consecutive scaling actions is constant,
we consider a discrete time model where a time slot length
matches the timescale which equals the least time interval of
adjusting the cloud capacity. Since the time spent on starting
up EC2 instances varies from their different OS types, capacity
levels, we assume that there exists a time interval of interest
t ∈ {0, 1, ..., T − 1}, which equals the least duration between
two consecutive scaling actions and is larger than the average
startup delay.

Second, a threshold of scaling must be set based on the
customized type of the performance metric. For instance,
Amazon EC2 scales up, i.e., increases the number of running
instances, when the chosen metric, e.g., CPU cycle utilization,
exceeds the set threshold. Here we select the average CPU
cycle utilization as the monitored metric, which can be denoted

3

as α(t). Correspondingly, the threshold of scaling up or down
can be αu or αd, respectively. So the action of scaling can be
formulated as follows:

S(t) =

m, α(t) ≥ αu
0, αd ≤ α(t) ≤ αu
−n, α(t) < αd

where the number of EC2 instances in once scaling up or down
can be set, which can be denoted as m and n respectively.
When α(t) exceeds αu, AWS Auto Scale will start up m EC2
instances. On the contrary, when α(t) drops below αd, AWS
Auto Scale will remove n running EC2 instances. When α(t) ∈
[αd, αu], the number of EC2 instances remains unchanged.

Finally, users need to set the minimum size and the
maximum size of an auto scaling group, in which the number
of running EC2 instances must be adjusted within the range
from the minimum size to the maximum size. However, when
outsourcing workloads are redirected to the public cloud, it is
possible that the workloads are too heavy to handle for the
finite auto scaling group. So users need to set a large number
as the maximum size of the auto scaling group. The number
of the running EC2 instances during the tth time slot can be
denoted as follows:

N(t) = N(t− 1) + S(t− 1). (1)

where N(t) must satisfies the following constraint:

Nmin ≤ N(t) ≤ Nmax. (2)

Moreover, Nmin and Nmax are the minimum size and the
maximum size of the auto scaling group, respectively.

After modeling the real IaaS public cloud, we take a look
at the model of the e-commerce website deployed in the public
cloud. As mentioned above, we regard the part in the public
cloud as a single unit which can complete all the functions
offloaded from the private cloud. Hence, an M/M/1 queue [13]
is used to evaluate the average response time in the public
cloud, which can be denoted as

DU (t) =
1

N(t)µU − λU (t)
, (3)

where µU is the constant service rate of each EC2 instance and
λU (t) is the average arrival rate of requests redirected to the
public cloud during the tth time slot. In order to provision high
quality services, Eq. (3) must satisfy the following constraint

λU (t) < N(t)µU . (4)

For simplicity, we assume that the CPU utilization reaches
the maximum value when an EC2 instance is busy and drops
to the minimum value when it is idle. As a result, the average
CPU cycle utilization during the tth time slot can be denoted
as

α(t) = P0(t) · βmin + (1− P0(t))βmax. (5)

where βmin and βmax are the minimum utilization and the
maximum utilization of CPU respectively.

2) Modeling the Private Cloud: The private cloud is
modeled as an M/M/1 queue here, too. In the queueing system,
as mentioned in the public cloud modeling, we also enforce
the following constraint:

λV (t) < µV , (6)

where µV is the average service rate of the private cloud. The
value of µV is constant, which means that the capacity of the
private cloud is finite.

According to Little’s Law, the average response time, i.e.,
the average time spent on serving requests in the private cloud,
can be denoted as

DV (t) =
1

µV − λV (t)
. (7)

3) Modeling the Tunnel: AWS Direct Connect [3] is
a dedicated network connection from a user’s premises to
Amazon EC2. Using the AWS Direct Connect, the e-commerce
website can establish a private connection between Amazon
EC2 and the on-premise infrastructure, which in many cases
can reduce the network costs, increase the bandwidth through-
put, and provide a more consistent network experience than
Internet-based connections. The AWS Direct Connect can be
used to redirect requests, transmit files and even database
queries. As such, when a flash crowd hits, excessive requests
will be redirected to the public cloud, and the private cloud will
not establish TCP connections between users and the private
cloud. In other words, as long as requests are assigned to the
public cloud, the public cloud will take full charge of the
request serving process.

TABLE II. AVAILABLE LEVELS OF TUNNEL

level 1 2 3 4 5 6 7

bandwidth(Mbps) 50 100 200 300 400 500 10,000

pricing(USD/hour) 0.03 0.06 0.12 0.18 0.24 0.30 2.25

The tunnel is priced based on different levels of bandwidth
l ∈ {0, 1, ..., L}, as shown in Table II. Correspondingly,
the capability of l-level tunnel can be denoted as µRl and
µRl ∈ {µR0 , µR1 , ..., µRL}. Meanwhile, fee of renting l-level
tunnel can be denoted as kl and kl ∈ {k0, k1, ..., kL}. As a
result, fee of renting the tunnel during the tth time slot can be

denoted as K(t) =
L∑
l=0

klxl(t) and the capability of the tunnel

during the tth time slot can be denoted as µR(t) =
L∑
l=0

µRl xl(t),

where xl ∈ {0, 1}. The tunnel is also modeled as an M/M/1
queue; hence, the queueing delay, i.e., the average delay of
transmitting requests, can be denoted as

DR(t) =
1

µR(t)− λR(t)
, (8)

where λR(t) is the average arrival rate of requests that are redi-
rected to the public cloud via AWS Direct Connect and µR(t)
is the finite transmitting capability of the tunnel. With the surge
of workloads, tunnel may be incapable of transmitting requests
timely, which may limit the number of EC2 instances. When
such a problem happens, it means that performance of the
hybrid cloud is constrained and a larger capacity of the tunnel

4

is needed. Given that the highest-level tunnel has a capacity of
10Gbps, we assume that the capability of the tunnel is large
enough, which leads to the following constraint:

λR(t) < µR(t). (9)

As illustrated in Fig. 2, the request leaving rate of the tunnel
µR(t) is the arrival rate of the public cloud λU (t). When the
queueing system does not serve any request, the leaving rate
of requests is zero. Meanwhile, the service rate of the tunnel,
i.e., µR(t), can be considered as the request arrival rate of the
public cloud, when the tunnel is busy. Therefore, the request
arrival rate of the public cloud can be denoted as

λU (t) = 0 · P0(t) + µR(t)(1− P0(t)) = λR(t), (10)

where P0(t) is the probability that the website doesn’t contain
any request. And P0(t) = 1− λR(t)

µR
.

B. Load Balancing for Provisioning Cost-Effective Services

As mentioned in Sec. I, the main task of the load balancer is
to decide how many requests are to be redirected to the public
cloud, so that the whole website can provision cost-effective
services. Furthermore, the outsourcing cost should be spent
as less as possible. The requests arrived at the website can be
divided into two parts. One is assigned to the private cloud, the
other to the public cloud, which can be formulated as follows:

λ(t) = λV (t) + λR(t), (11)

where λ(t) is the average request arrival rate during the tth
time slot. As a result, the average response time of requests
during the tth time slot can be denoted as

D(t) =
λV (t)

λ(t)
DV (t) +

λR(t)

λ(t)
(DR(t) +DU (t)). (12)

When a flash crowd hits, the e-commerce website deploys
more EC2 instances to handle it. The cost of renting EC2
instances during the tth time slot can be denoted as:

I(t) = AN(t), (13)

where A is the price of renting one running EC2 instance.

Meanwhile, when deploying a tunnel, the e-commerce
website also needs to rent a proper level of bandwidth and
maintain the minimum delay of transmitting requests. The
cost of renting the tunnel during the tth time slot can then
be denoted as

K(t) =

L∑
l=0

klxl(t). (14)

In order to provision cost-effective services, the website
needs to spend outsourcing cost as less as possible. Commonly,
the website will set a time-averaged budget M . The constraint
on the time-averaged outsourcing cost of deploying the hybrid
cloud can be enforced as follows:

lim
T→∞

1

T

T−1∑
t=0

(AN(t) +AS(t) +

L∑
l=0

klxl(t)) ≤M. (15)

From the perspective of performance, we take D(t), i.e.,
average response time, as the performance metric of the
website. On the other hand, the time-averaged outsourcing cost

should stay below the budget. So the optimization problem can
be formulated as follows:

min lim
T→∞

1

T

T−1∑
t=0

D(t)

s.t. constraints (2) (4) (6) (9) (15)

(16)

For the real hybrid cloud scenario, there exists a potential
conflict when handling this optimization problem: due to the
bursty and fluctuation of flash crowds, it is difficult to predict
the workloads of next time slot. How to distribute workloads
between the private cloud and the public cloud to make the
website provision cost-effective services in a long period of
time remains a challenging problem.

III. COST-EFFECTIVE REQUESTS DISTRIBUTING ONLINE
ALGORITHM

Flash crowds are featured by their bursty and unpredictabil-
ity; hence, the website is generally unaware of how workloads
in next second will be. Furthermore, the e-commerce website
provisions instant services, which means that it has to react
promptly to the upcoming workloads. As a result, an online
algorithm is needed for the website. As mentioned in Sec. II-B,
the objective is to minimize the average response time. The
constraint (15) however implies that the outsourcing cost must
not exceed the budget. During the tth time slot, the outsourcing
cost increases or decreases a little, which seems like a queue
with someone coming or leaving. As a result, a closer exami-
nation on the constraint suggests that the inequality (15) can be
modeled as a queue. When the increasing part approximately
equals the decreasing part, the outsourcing cost, i.e., the length
of the queue, will be stable. Therefore, by optimizing the upper
bound of the outsourcing cost, we can control the outsourcing
cost below the budget. This leads to Lyapunov optimization
techniques [14] for solving the problem (16).

A. Problem Transformation Using Lyapunov Optimization

Based on the analysis above, to capture the states of the
outsourcing cost and the budget, we introduce a virtual queue
Q(t), which is used to accumulate the part of the outsourcing
cost that exceeds the budget. Initially, we define Q(0) = 0 and
then update the queue as follows:

Q(t+ 1) = max{Q(t) +AS(t)

+AN(t) +

L∑
l=0

klxl(t)−M, 0}.

where S(t) ,
L∑
l=0

klxl(t), M and N(t) are defined in Sec. II.

And Q(t) can be obtained from the backlog of the virtual
queue. In fact, the constraint (15) enforces that the virtual
queue is stable, i.e., limT→∞

Q(t)
T = 0.

Proof: From equation (17), we have

Q(t+ 1) ≥ Q(t) +AS(t) +

L∑
l=0

klxl(t) +AN(t)−M (17)

5

Summing up both sides of the inequality (17) over time slots
t ∈ {0, T − 1}, and then dividing T , we have

Q(T − 1)−Q(0)

T
≥ 1

T

T−1∑
t=0

AS(t)

+
1

T

T−1∑
t=0

L∑
l=0

klxl(t) +
1

T

T−1∑
t=0

AN(t)−M.

Finally, making T →∞, and applying Q(0) = 0, we have

lim
T→∞

Q(T − 1)

T
≥ lim
T→∞

1

T

T−1∑
t=0

(AS(t)

+

L∑
l=0

klxl(t) +AN(t))−M. (18)

Applying the constraint (2) and (15) to inequality (18), we
can conclude that limT→∞

Q(t)
T = 0 means the virtual queue

Q(t) is stable. When the length of the virtual queue is large,
it means that the current outsourcing cost has far exceeded
the budget. As a result, there is little probability for the e-
commerce website provisioning cost-effective services.

1) Bounding 1-slot Lyapunov Drift: Taking advantage of
Lyapunov optimization techniques, we define a Lyapunov
function as a scalar measure of congestion in the system.
The larger value of the Lyapunov function is, the more the
outsourcing cost is. As a result, the constraint (15) is hard to
be enforced, i.e., the outsourcing cost will exceed the budget.
Specifically, we define the following Lyapunov function:

L(Q(t)) =
1

2
Q2(t). (19)

To keep the virtual queue stable, i.e., keep the outsourcing
cost staying below the budget, we need to push the Lyapunov
function towards a lower congestion state, which means that
the website seeks to prevent the virtual queue increasing too
much in next time slot. In this way the website can keep the
virtual queue in a bounded state; in other words, control the
outsourcing cost. We define the conditional 1-slot Lyapunov
drift as follows:

∆(Q(t)) = E{L(Q(t+ 1))− L((Q(t))|Q(t)}. (20)

Insight: By defining the Lyapunov function and the con-
ditional 1-slot Lyapunov drift, we can obtain a metric of the
queue’s stability, i.e., L(Q(t)), and a tool of keeping the queue
staying in a stable state, i.e., ∆(Q(t)). We now can use them to
enforce the constraint (15) during the process of optimization.

We first calculate the upper bound of ∆(Q(t)), and try to
make the bound closer to ∆(Q(t)).

Lemma 1: For any t ∈ {0, T − 1}, given any possible
control decision, the Lyapunov drift ∆(Q(t)) can be deter-
ministically bounded as follows:

∆(Q(t)) ≤ B +Q(t)E{AS(t)

+

L∑
l=0

klxl(t) +AN(t)−M |Q(t)}.

Proof: Apply Eq. (19) to Eq. (20), we have

∆(Q(t)) = E{L(Q(t+ 1))− L((Q(t))|Q(t)}

=
1

2
E{Q2(t+ 1)−Q2(t)|Q(t)}.

Noting that max2{a, 0} ≤ a2, we have

Q2(t+ 1) ≤ Q2(t) + (AS(t) + ϕ(t))2

+ 2Q(t)(AS(t) + ϕ(t)),

where ϕ(t) = AN(t) +
L∑
l=0

klxl(t)−M . Hence, we have

∆(Q(t)) =
1

2
E{Q2(t+ 1)−Q2(t)|Q(t)}

≤ E{Q(t)(AS(t) + ϕ(t))

+
1

2
(AS(t) + ϕ(t))2|Q(t)}.

Applying the constraint (2), S(t) ≤ m and
L∑
l=0

klxl(t) ≤ kmax,

we have

∆(Q(t)) ≤ B +Q(t)E{AS(t)

+

L∑
l=0

klxl(t) +AN(t)−M |Q(t)}, (21)

where B = 1
2 (Am+ANmax + kmax −M)2.

2) Bounding Drift-Plus-Performance: After bounding the
1-slot Lyapunov drift, we can minimize this upper bound to
make the queue stable, so as to enforce the constraint (15).
Following the Lyapunov optimization framework, we add a
penalty term to both sides of inequality (21). The underlying
objective of our optimal control decisions is to minimize the
bound on the following drift-plus-performance expression in
each time slot:

V D(t) + ∆(Q(t)) ≤ B + V D(t) +Q(t)E{AS(t)

+
L∑
l=0

klxl(t) +AN(t)−M |Q(t)}. (22)

Insight: Now we can minimize the average response time
and enforce the constraint (15). At the same time, we have
a parameter V ; by tuning it, we can choose which objective
we need to emphasize. In order to make the website provision
cost-effective services, we just need to apply a proper value
of V and minimize the upper bound of drift-plus-performance.
Hence, the problem (16) can be transformed as follow:

min V D(t) +Q(t)(AS(t)

+

L∑
l=0

klxl(t) +AN(t)−M)

s.t. constraints (2) (4) (6) (9)

(23)

Insight: Till now, we have transformed the long-term
optimization problem to the problem above in each time slot.
During each time slot t ∈ {0, 1, ..., T − 1}, we minimize the
sum of the outsourcing cost and the penalty of the average
response time. And V is a control knob to adjust our emphasis
on the outsourcing cost compared to the average response time,
which finally enables the website to provision cost-effective
services during a long period of time.

6

B. Optimal Analysis

We now analyze the optimality of the proposed one time
slot optimization problem above, in terms of a tradeoff between
the average response time and the outsourcing cost. For an
algorithm with any fixed parameter V such that V > 0, inde-
pendent of the current queue backlogs, it yields the following
steady state values during any time slot t ∈ {0, 1, ..., T − 1}:

1

T

T−1∑
t=0

D(t) = P ∗, (24)

where P ∗ is the optimal response time in theory. Based on the
constraint (15), we have

E{AN(t) +AS(t) +

L∑
l=0

klxl(t)} ≤M. (25)

Therefore, there must exist an ε, which can transform the
inequality (25) to the following form:

E{AN(t) +AS(t) +

L∑
l=0

klxl(t)} ≤M − ε, (26)

where ε > 0.

The problem (23) implies that we need to make a decision
to minimize right side of inequality (22). By applying P ∗ to
inequality (22), and summing up the inequality (22) over time
slots t ∈ {0, 1, ..., T − 1}, and then dividing both sides by T ,
we have

V

T

T−1∑
t=0

D(t) +
L(Q(T))− L(Q(0))

T

≤ B + V P ∗ − ε

T

T−1∑
t=0

Q(t).

Making T → ∞, as a result, L(Q(T))−L(Q(0))
T = 0. Note that

V
T

T−1∑
t=0

D(t) > 0, we have:

lim
T→∞

1

T

T−1∑
t=0

Q(t) ≤ B + V P ∗

ε
. (27)

Also, noting that − ε
T

T−1∑
t=0

Q(t) < 0, we have

lim
T→∞

1

T

T−1∑
t=0

D(t) ≤ B

V
+ P ∗. (28)

Insight: The inequalities (27) and (28) demonstrate an
[O(1

V), O(V)] performance-cost tradeoff. The inequality (28)
shows that by choosing a larger V , the average response
time under the online algorithm can be pushed closer to the
optimum value P ∗. However, when V is too large, the virtual
queue will be unstable, which means that the outsourcing cost
has exceeded the budget and it is hard to enforce the constraint
(15). Within the online algorithm above, tuning the parameter
V such that V > 0 for all t ∈ {0, 1, ..., T − 1}, we minimize
both the outsourcing cost and the average response time.

C. Cost-Effective Online Algorithm

According to the problem (23) transformed by Lyapunov
optimization techniques, the current optimal problem is much
simpler. We find that there exists a variable Q(t), which is
the length of the virtual queue. In each round of optimization,
based on the backlog of Q(t) and the request arrival rate, we
make the algorithm being “adaptive”. Furthermore, during each
time slot t ∈ {0, 1, ..., T − 1}, we choose the optimal η(t) =
λR(t)
λ(t) , which makes our algorithm “greedy”. First, switching

among the different levels of the tunnel does not have any
constraint. Also, we can switch from the current level to any
other level freely. Second, the average response time D(t) is a
continuous function in the available space of η(t); it is easy to
calculate the minimum value by using the bisection method,
which only has O(log n) complexity.

Algorithm 1 Cost-Effective Online Algorithm (CEOA)
for each l ∈ [0, L] do

calculate available space S of η(t)

find ηa(t) ∈ S, which satisfies d(D(t))
d(η(t)) |η(t)=ηa(t) = 0, and

denote all the satisfied ηa(t) as ηZ(t)
filter all the ηz(t) ∈ ηZ(t) and get ηm(t), which makes
D(t) minimum
get minimum objective Omin
get ηmin(t) that make objective minimum
if Oopt > Omin then
ηopt(t) = ηmin(t)
Oopt = Omin

end if
end for

IV. PERFORMANCE EVALUATION

In this section, we conduct trace-driven simulations to eval-
uate the performance of our Cost-Effective Online Algorithm,
i.e., CEOA. Our trace imitates the real flash crowd during
the Double Eleven promotion season of Taobao, which is the
largest e-commerce website with 6 billion subscribers in China.

A. Simulation Setup

We simulate a private cloud with constant capacity, and a
public cloud with changeable capacity. In a promotion season,
an e-commerce website knows flash crowds will come, and the
initial capacity of the public cloud should be set large enough
to handle the first wave of flash crowds. Then the public cloud
will adjust the capacity to accommodate unknown upcoming
workloads.

1) Hybrid Cloud Web Service Framework: In order to
resolve the general and essential problem in a website within a
hybrid cloud, we propose a simple framework for adjusting the
capacity of the public cloud. Our online framework is built as a
high-level abstraction that hides the details of web application
tiers, the operating system used, the types of HTTP servers and
cloud providers. Our online framework aims to give a basic
understanding of flash crowds in e-commerce web services
within a hybrid cloud. It contains three main modules: a private
cloud, a public cloud and a load balancer. In order to imitate
the real web service and request serving process, we also add

7

a request generator out of clouds. Moreover, we also add a
tunnel with limited bandwidth which represents the connection
between the private cloud and the public cloud, resembling the
function of the AWS Direct Connection. During each time slot,
the request generator produces a series of requests; then each
cloud which contains a queue will receive requests dispatched
by the load balancer.

2) Flash Crowd Arrival Pattern: In order to simulate the
large scale of flash crowds, we apply four types of request
arrival patterns to our simulations. First, we imitate the real
trace of a flash crowd from Taobao. The trace of the flash
crowd comes from the real trace of page view (PV) during
Double Eleven promotion season of Taobao. Second, apart
from the real trace, we also design three other request arrival
patterns calculated by mathematic formulations. They are:
1) constant arrival pattern; 2) random arrival pattern; 3)
realistic arrival pattern which has been characterized based
on empirical measurement studies and fluid modeling analysis
function. All the three mathematic request arrival patterns can
provide simulation results as comparison and different scales
of flash crowds by tuning key parameters.

3) Two Request Distributing Strategies for Comparison: In
order to explore the performance of CEOA, we set two simple
strategies to be compared with CEOA. One is the “public
cloud first” strategy (“cloud first” for short), which tends to
redirect requests to the public cloud as many as possible. When
the public cloud is incapable to handle the excessive requests,
the requests will be redirected to the private cloud. The other
strategy is the “local first” strategy. The “local first” strategy
allows the e-commerce website to use the private cloud as
much as possible, which is a totally contrary strategy to “cloud
first”. By comparing CEOA with such two extreme strategies,
we can analyze the performance of CEOA more clearly.

B. Performance Evaluation

0 100 200
0

0.2

0.4

0.6

0.8

1

ConstantC
D

F
 o

f
R

e
sp

o
n

se
 D

e
la

y

0 100 200
0

0.2

0.4

0.6

0.8

1

Random
0 500 1000

0

0.2

0.4

0.6

0.8

1

Realistic
0 100 200

0

0.2

0.4

0.6

0.8

1

Trace-Driven

Local First

Cloud First

CEOA

Fig. 3. CDF of response time of different strategies under different request
arrival patterns

CDF of response time. We apply three different optimizing
strategies to four flash crowd patterns. And the results are dis-
played in Fig. 3. The four flash crowd patterns are introduced
in Sec. IV-A2. In Fig. 3, we can observe that the “cloud first”
strategy can enable the website to provision best services under
any type of flash crowds. Because the capacity of the public
cloud is theoretically infinite, performance of “cloud first”
strategy is the best. On the contrary, the “local first” strategy
provisions the worst services. In Fig. 3, about 80 percent of
response time results produced by CEOA are close to those
of the “cloud first” strategy. Nearly 20 percent of response

time results are close to those of “local first” strategy. This
interesting phenomenon implies that CEOA is searching the
balancing point of service quality between those two extreme
solutions.

C o n s t a n t R a n d o m R e a l i s t i c
T r a c e - D r i v e n0 . 0

0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

Ou
t-S

ou
rci

ng
 Co

st L o c a l F i r s t
 C l o u d F i r s t
 C E O A

���×

Fig. 4. Outsourcing cost of different strategies under different flash crowd
arrival patterns

Outsourcing cost. As illustrated in Fig. 4, the outsourcing
cost of the “local first” strategy is the minimum while the
outsourcing cost of the “cloud first” strategy is the maximum
among these three strategies. Based on Fig. 3 and 4, although it
seems that CEOA is not outstanding in either performance or
cost, we can discover that CEOA is trying to make the website
provision better services by spending less outsourcing cost, i.e.,
cost-effective services. In order to justify whether CEOA can
help the e-commerce website provision cost-effective services,
we then measure the performance-cost ratio of all the strategies
under different request arrival patterns.

C o n s t a n t R a n d o m R e a l i s t i c
T r a c e - D r i v e n0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

Pe
rfo

rm
an

ce
/Co

st L o c a l F i r s t
 C l o u d F i r s t
 C E O A

Fig. 5. The performance-cost ratio of different strategies under different
request arrival patterns

Performance-Cost ratio. In this paper, we take average
response time as the metric of performance, so reciprocal of
the average response time can be regarded as the performance
metric of the website. Hence, dividing the performance metric
by total outsourcing cost, we can get the performance-cost
ratio. Based on the analysis above, the “local first” strategy
is the most economic while the “cloud first” strategy helps
the website provision the best services. However, Fig. 5
clearly demonstrates that CEOA has the largest performance-
cost ratio. In other words, we can conclude that CEOA is
the best solution and enables the website to provision cost-
effective services. According to the simulations above, we
can intuitively conclude that there exists a tradeoff between
performance and cost. As such, we try to further demonstrate
the tradeoff between them.

8

4 8 1 2 1 6 2 02 1 0
2 2 0
2 3 0
2 4 0
2 5 0
2 6 0

 D e l a y
 C o s t

VAv
era

ge
 Re

sp
on

se
 Ti

me

x 1 0 4
1 8 . 9 6

1 9 . 0 0

1 9 . 0 4

1 9 . 0 8

1 9 . 1 2

Tim
e-a

ve
rag

ed
 Co

st

Fig. 6. The time-averaged outsourcing cost and the average response time
vs. different values of V

The performance-cost tradeoff. To explore dedicated
tradeoff between performance and cost, we vary the parameter
V to choose the metric we want to emphasize, average
response time or outsourcing cost. In Fig. 6, by tuning the
value of V to a small one, we observe that the average response
time is large while the outsourcing cost is small. Meanwhile,
by setting a large value of V , it brings markedly increase
of the outsourcing cost and decrease of the average response
time. Furthermore, when the average response time drops, the
outsourcing cost grows remarkably. By now, we have justified
the tradeoff analyzed in Sec. III-B. And choosing a value of
V represents how much we emphasize the average response
time compared to the outsourcing cost and finally enables the
e-commerce website to provision cost-effective services.

0 1 2 3 4 5
0

3 0
6 0
9 0

1 2 0
1 5 0

Av
era

ge
 Re

sp
on

se
 Ti

me

F l a s h C r o w d S c a l e

 B u d g e t = 5 0
 B u d g e t = 1 0 0
 B u d g e t = 2 0 0

x 1 0 4

Fig. 7. The average response time under different scales of flash crowds with
different values of budget

The average response time under different values of
budget. Fig. 7 demonstrates the relationships among average
response time, budget, and the scale of flash crowds. The time-
averaged budget varies from 50 to 200, while the maximum
scale of the flash crowd varies from 0 to 50000. Then we
observe some interesting trends in Fig. 7: on the one hand,
as the budget increases and the scale of the flash crowd stays
constant, we observe that the average response time decreases
much when the budget increases form 50 to 100. However,
when the budget increases from 100 to 200, the average
response time decreases not as much as it dose when budget
increases from 50 to 100. The phenomenon demonstrates that
more budget will improve performance, however, too much
amount of budget will not promote the performance much. On
the other hand, under a certain amount of budget, when the
scale of the flash crowd increases, the average response time
increases conspicuously. Yet we find that the increasing trend

is approximately linear, which implies that the scale of the
flash crowd may affects average response time linearly.

0 5 1 0 1 5 2 0 2 5 3 02 5 0

2 5 5

2 6 0

2 6 5

2 7 0

2 7 5
 D e l a y
 C o s t

S c h e d u l e G r a n u l a r i t y

Av
era

ge
 Re

sp
on

se
 Ti

me

1 9 . 2
1 9 . 3
1 9 . 4
1 9 . 5
1 9 . 6
1 9 . 7
1 9 . 8
1 9 . 9

 Ti
me

-av
era

ge
d C

os
t

Fig. 8. The time-averaged outsourcing cost and the average response time
vs. different values of granularity

Analysis on different values of granularity. In Fig. 8,
we set various types of optimizing granularity, which is the
least time interval of making one time request distribution.
When the granularity of optimizing grows from 1 to 10, the
average response time decreases correspondingly. However,
when granularity of optimizing increases from 10 to 30, the
average response time increases. Fig. 8 implies that when
granularity of optimizing is too small, it will not help minimize
the average response time. Because a flash crowd is featured by
its bursty and fluctuation, the number of requests of every time
slot may be quite different from each other. If granularity of
optimizing is too small, the public cloud will be sensitive, and
easy to adjust its capacity based on the fluctuating workloads.
On the other hand, adjusting capacity frequently will lead to
minimize the outsourcing cost, however, the performance can
not be guaranteed. Based on Fig. 8, we can conclude that the
granularity of optimizing can neither be too large nor too small.

V. RELATED WORK

For a hybrid cloud, how to outsource workloads from a
private cloud to a public cloud is a critical challenge. We rec-
ognize that existing works [15][16] that contribute to workload
distribution and modeling under hybrid cloud scenarios. Our
study is different from and complement to these works. More
importantly, our work takes flash crowds into consideration,
which makes the problem more challenging.

Compared to [15] which splits workloads into two parts
in a hybrid cloud, our study differs in at least two important
aspects. First, we model the e-commerce website in the hybrid
cloud with the queueing theory while Zhang et al. [15] do not
propose any mathematic model. Second, our work proposes
an online framework to provision cost-effective services with
rigorous optimality analysis. However, Zhang et al. [15] con-
centrate on reducing workload dynamics with neither further
exploring impacts brought to the performance nor proving the
effectiveness theoretically.

Compared to [16] that also solves workloads distribution in
a hybrid cloud, our study is different in the following aspects.
First, we discuss flash crowds in the e-commerce websites,
where workloads are more fluctuating. Second, our workloads
are user requests that are different from the MapReduce
workloads in [16]. It is necessary for user requests to be served

9

as quickly as possible, while MapReduce tasks are delay-
tolerant. Third, we add the tunnel that connects the public
cloud and the private cloud in the system model, which is
more practical.

Liu et al. [17] focus on the effects of flash crowds and
leverage population control for alleviating flash crowds in P2P
live streaming system. Inspired by [17] yet different from it,
our work studies flash crowds in e-commerce website scenarios
deployed in hybrid clouds.

With respect to studies on managing the performance
overhead of VMs, part of the work in [18] summarizes it
under diverse scenarios of the IaaS cloud. Specifically, Xu
et al. [18] discuss the performance modeling methods with
a particular focus on their cost, and compare the overhead
mitigation techniques by identifying their effectiveness. Cor-
respondingly, by leveraging a mitigation technique of request
distributing, our work aims at guaranteeing performance along
with controlling cost, i.e., provisioning cost-effective services,
in a hybrid cloud, which is different from and complementary
to the IaaS cloud in [18].

On the other hand, our work studies provisioning cost-
effective services in e-commerce websites, which is from
the perspective of applications rather than VMs in [18]. By
using a multi-tier architecture, Urgaonkar et al. [5] abstract all
the web applications as well as evaluate the queueing delay.
As a result, they approximately measure the performance of
web applications. In this paper, we use an M/M/1 queue to
encapsulate the whole functionalities in a website so that we
can estimate the performance of e-commerce websites and
concentrate on solving request distribution problem.

A majority of the existing literature leverages Lyapunov
optimization techniques. For example, with respect to geo-
distributed datacenters, Zhou et al. [19] take advantage of Lya-
punov optimization techniques to design and analyze a carbon-
aware control framework, which makes online decisions on
geographical load balancing, capacity right-sizing, and server
speed scaling; with respect to single mega-datacenter, they also
apply Lyapunov optimization techniques to design and analyze
an optimal control framework to make online decisions on
request admission control, routing, and VM scheduling [20].
Shu et al. [21] present eTime, a novel energy-efficient data
transmission strategy between cloud and mobile devices, based
on Lyapunov optimization.

Different from the works mentioned above, we particularly
adapt Lyapunov optimization approaches to request distribut-
ing and decision-making of scaling in the context of hybrid
clouds. After transforming original optimization objective to a
new problem, we use a greedy strategy to solve it. The function
of queueing delay is continuous, so we use the bisection
method to obtain its approximate minimum value. It only takes
O(log n) of the algorithm complexity. Furthermore, from the
real product of AWS Direct Connect, users can switch from
the current level of bandwidth to any other one freely to get
the optimal level. Hence, applying greedy algorithm to this
problem is efficient and simple.

VI. CONCLUSION

In response to increasing page visits and bill transactions
brought by flash crowds during promotion seasons, most e-

commerce websites rent public cloud computing resources to
ease workloads laid to private clouds. How to outsource the
workloads to a public cloud so that the website can provision
cost-effective services becomes a critical challenge. In this
paper, we designed an online algorithm to help an e-commerce
website provision cost-effective services. By applying Lya-
punov optimization techniques, our online algorithm can make
real time decision on how to outsource workloads from a
private cloud. Furthermore, we proved that our online algorith-
m can approach a dedicated [O(1

V), O(V)] tradeoff between
outsource cost and average response time. Through simulations
with empirical real e-commerce PV trace, we demonstrated the
effectiveness of our solution in both minimizing the average
response time and controlling the outsourcing cost.

REFERENCES

[1] How Alibaba Catered To USD 3 Billion Sales In A Day. [Online].
Available: http://www.infoq.com/news/2012/12/interview-taobao-tmall

[2] Amazon EC2. [Online]. Available: http://aws.amazon.com/ec2/
[3] AWS Direct Connect. [Online]. Available:

http://aws.amazon.com/directconnect/
[4] A. Perkins and T. Owen, “How businesses should be incorporating

hybrid cloud as part of their core it strategy,” White Paper, Rackspace,
Sep. 2013.

[5] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An
analytical model for multi-tier internet services and its applications,”
SIGMETRICS Perform. Eval. Rev., 2005.

[6] Y. Diao, J. Hellerstein, S. Parekh, H. Shaikh, M. Surendra, and A. Tanta-
wi, “Modeling differentiated services of multi-tier web applications,” in
Proc. of IEEE MASCOTS, 2006.

[7] V. Paxson and S. Floyd, “Wide area traffic: the failure of poisson
modeling,” Networking, IEEE/ACM Transactions on, 1995.

[8] L. Kleinrock, Queueing Systems, Volume 1: Theory. John Wiley and
Sons, Inc, 1975.

[9] RackSpace. [Online]. Available: http://www.rackspace.com/
[10] Windows Azure. [Online]. Available: https://azure.microsoft.com/
[11] VMWare vCloud Hybrid Service. [Online]. Available:

http://vcloud.vmware.com/
[12] Auto Scaling. [Online]. Available: http://aws.amazon.com/autoscaling/
[13] L. P. Slothouber, “A model of web server performance,” in Proc. of

ACM WWW, 1996.
[14] M. J. Neely, Stochastic Network Optimization with Application to Com-

munication and Queueing Systems. Morgan and Claypool Publishers,
2010.

[15] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, “Intelligent
workload factoring for a hybrid cloud computing model,” in Proc. of
World Conference on Services - I, 2009.

[16] X. Qiu, W. L. Yeow, C. Wu, and F. Lau, “Cost-minimizing preemptive
scheduling of mapreduce workloads on hybrid clouds,” in Proc. of
IEEE/ACM IWQoS, 2013.

[17] F. Liu, B. Li, L. Zhong, B. Li, H. Jin, and X. Liao, “Flash Crowd in
P2P Live Streaming Systems: Fundamental Characteristics and Design
Implications,” IEEE Trans. Parallel and Distributed Systems, 2012.

[18] F. Xu, F. Liu, H. Jin, and A. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey, state of
the art, and future directions,” Proc. of the IEEE, vol. 102, no. 1, pp.
11–31, Jan 2014.

[19] Z. Zhou, F. Liu, Y. Xu, R. Zou, H. Xu, J. Lui, and H. Jin, “Carbon-
aware load balancing for geo-distributed cloud services,” in Proc. of
IEEE MASCOTS, 2013.

[20] Z. Zhou, F. Liu, H. Jin, B. Li, B. Li, and H. Jiang, “On arbitrating
the power-performance tradeoff in saas clouds,” in Proc. of IEEE
INFOCOM, 2013.

[21] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, and Y. Qu, “eTime: Energy-
efficient transmission between cloud and mobile devices,” in Proc. of
IEEE INFOCOM, 2013.

