IEEE TRANSACTIONS ON CLOUD COMPUTING

When FPGA Meets Cloud: A First Look at
Performance

Xiuxiu Wang, Yipei Niu, Fangming Liu*, Senior Member, IEEE, and Zichen Xu, Member, IEEE

Abstract—Cloud service providers promote their new field programmable gate array (FPGA) infrastructure as a service (laaS) as the
new era of cloud product. This FPGA laaS wraps virtualized compute resources with FPGA boards, e.g., Amazon AWS F1, and
reserves acceleration capability for specific applications. Though this acceleration technique sounds promising, questions like real
world performance, best-fit scenarios, portability, etc., still need further clarification. In this paper, we present one of the first few
empirical studies that take a close look at FPGA clouds from the tenants’ perspective. We have conducted measurement studies on
Amazon AWS, Alibaba, and Huawei clouds for over one year. The experimental results show that: (1) Tenants experience severe
performance-cost imbalance on FPGA laaS platforms; (2) The inter-communication performance in FPGA clouds is tightly constrained
by hardware drivers, e.g., small optimization of DMA drivers for PCle can harvest significant performance gain; (3) The virtualized
FPGA clouds are far from mature, e.g., small-sized jobs can greatly degrade the performance of FPGA clouds due to underutilized
PCle bandwidth. Our study not only provides useful hints to help tenants with FPGA service selection, but also sheds some lights for

cloud providers to improve the performance of FPGA clouds.

Index Terms—FPGA Cloud, FPGA Acceleration, Virtualization, Performance Measurement.

1 INTRODUCTION

leld Programmable Gate Array (FPGA), is a re-
F programmable silicon chip that enjoys both high
throughput and low latency by breaking the paradigm of se-
quential execution and accomplishing more per-clock. Ben-
efiting from this powerful computing capacity and “hard”
implementation of program execution, FPGA is widely used
to accelerate applications like image recognition [35], spam
filtering [14], complex data analysis [26], [27], etc.

Besieds FPGAs, GPUs are also applied for high perfor-
mance acceleration. However, compared to GPU, FPGA can
provide superior energy efficiency, which is an essential
metric especially in large-scale datacenters. In [34], with
matrix multiplication workloads, the authors point out that
Stratix 10 FPGA achieves nearly 90% performance and 200%
performance/watt of TitanX Pascal GPU. Similarly, it is
shown that EVGA GeForce GTX 295 GPU consumes one or-
der of magnitude higher energy than Stratix IIl FPGA with

o This work was supported in part by NSFC under Grant 61722206 and
61761136014 (and 392046569 of NSFC-DFG) and 61520106005, in part
by the National Key Research & Development (R&D) Plan under Grant
2017YFB1001703, in part by the Fundamental Research Funds for the
Central Universities under Grant 2017KFKJXX009 and 3004210116, in
part by the National Program for Support of Top-notch Young Profession-
als in National Program for Special Support of Eminent Professionals,
in part by the National Science Foundation China (NSFC) under Grant
61702250.

e X. Wang, Y. Niu, and F. Liu are with the National Engineering Research
Center for Big Data Technology and System, the Services Computing
Technology and System Lab, Cluster and Grid Computing Lab in the
School of Computer Science and Technology, Huazhong University of
Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
E-mail: {m201672794, niuypei, fmliu}@hust.edu.cn. The corresponding
author is Fangming Liu.

o Z. Xu is with the Generic Operational and Optimal Data Lab, Nanchang
University, 999 Xuefu BLVD, IEB A608-1, Nanchang, 330000, China.
E-mail: xuz@ncu.edu.cn.

digital signal processing applications, and its performance is
averagely three times higher [22]. Increasingly, cloud service
providers (CSP) prefer this new managed FPGA infras-
tructure that masks the difficulty of FPGA programming,
yet effectively adapts its computation feasibility. Intel, with
its $16.7 billion acquisition of Altera, predicts that 30% of
servers will have FPGAs by 2020 [7]. AWS F1 [3], Alibaba
Cloud FPGA instances [1], Huawei FACS [8], and Tencent
FPGA Cloud Computing [2], are examples of commercial
FPGA TaaS.

FPGA IaaS can lease bundles of memory, CPU, and
a specific FPGA board, called FPGA instance, from IaaS
clouds. For example, Amazon designed a cloud server with
a fabric of pooled accelerators that interconnects with up to
8 FPGAs [3]. Each FPGA is connected with the cloud server
via the PCle network. The interconnection of FPGAs allows
the chips to share memory, and achieves high bandwidth
as well as low latency for inter-chip communication, thus
supporting up to 8 FPGA boards.

However, from a tenant’s perspective, adapting FPGA
instances could be expensive for two reasons. First, an
FPGA instance can virtualize compute resources but cannot
virtualize inter-chip communication. An ill-managed PCle
bus can significantly diminish the performance gained from
the FPGA accelerator. Furthermore, public cloud is a multi-
tenant system with contention and interference, which may
lead to severe performance variation. Second, concerning
virtualization and multi-tenancy of public cloud, tenants
are required to develop a different strategy of using FPGA
IaaS compared to dedicated physical FPGA, so as to achieve
high performance and low cost. Consequently, cloud tenants
may have the following questions: 1) What are advantages
and disadvantages of FPGA laaS; 2) Based on sufficient
knowledge of FPGA IaaS, how to cost-effectively rent cloud
FPGA to maximize profit, i.e., achieving high acceleration



IEEE TRANSACTIONS ON CLOUD COMPUTING

performance with minimal cost.

CSPs do expose APIs or even provide manufactured
tools to evaluate their cloud products. For example, Amazon
CloudWatch helps to monitor system-wide performance,
and Alibaba Pricing Calculator helps to estimate the cost of
renting the instances. However, these mature tools are built
for virtualized resources, like memory or CPU, rather than
FPGA. Related metrics of FPGA, such as block counters and
steamed bytes, are hidden in the higher level abstraction.
We need to understand the real performance of FPGA cloud
from the tenants’ perspective, so we come up with a fine-
grained approach to achieve this.

It is challenging to conduct performance analysis of
cloud FPGA instances from the tenants’” perspective. First,
although the abstraction of FPGA programming is easy for
development, it is difficult to understand the performance
fundamentally. Second, CSPs conceal the details about the
architecture design of FPGA laaS, making it hard to under-
stand the data movement along memory hierarchies. Third,
the complicated nature of virtualized FPGAs offered by
multiple vendors increases the difficulty in both program
migrations and program analysis. To address the challenges,
we conduct an empirical measurement on FPGA clouds,
motivated by a measurement study about the performance
characteristics of FPGA IaaS for various compute-intensive
and streaming workloads. In an effort to help tenants un-
derstand the real performance of cloud FPGA instances, our
measurements can be divided into three levels specifically:

e VM level: We explain the rationales behind the ab-
straction of programming interfaces related to operating
FPGA, i.e., device drivers. Our discussion about the de-
vice drivers will aid tenants in understanding how they
work and improving FPGA acceleration performance. The
performance metrics of device drivers are defined as PCle
throughput and latency of data transmission.

e Inter-communication level: We trace the data movement
along memory hierarchies in FPGA clouds and measure
the PCle bandwidth variation, so as to identify and quan-
tify the data transfer overhead introduced by virtualiza-
tion techniques for tenants.

e Device level: We seek to explore how the cloud-based
FPGA board performs when accelerating various appli-
cations, so that tenants can select proper FPGA instances
based on their application types. The performance metrics
of FPGA board are defined as throughput and latency of
acceleration jobs.

In this paper, we take a first effort to empirically quan-
tify the FPGA instance performance of three major cloud
providers, namely, Amazon AWS, Alibaba and Huawei
clouds over one year. Our findings can serve as a basis
to understand performance of cloud FPGA instances. We
also expose the opportunity for tenants towards getting the
maximum benefit. Here we list our findings:

1) There exists severe performance-cost imbalance on
the FPGA IaaS platforms. Overall, the low-end FPGA
instances produce as higher as 1.4x performance-cost
ratio (i.e., performance gain against CPU divided by cost
during acceleration) compared to the high-end ones, just
bounded by 20% performance degradation on average.

2) Streaming workloads fail to fully exploit the advan-

2

tages of FPGAs and deliver extremely low performance.

Compared to compute-intensive workloads, we discover

that streaming workloads perform 20x to 40x slower

due to the inefficiency of data communication between

FPGA and VM in FPGA clouds.

3) The number of FPGA nodes (or compute units) and
data communication bandwidth differ in ways that can
significantly affect performance. In a distributed FPGA
acceleration system, only striking a balance between the
data processing speed and the data transfer speed can
achieve the best performance of FPGA clouds.

4) Drivers of FPGA devices show a large variance in per-
formance. Specifically, among the cloud FPGA instances
we evaluate, for communications between FPGA and
VM, user space driver outperforms kernel space driver,
increasing throughput by 1.6x at most when transfer
data size exceeds 4M during writing to FPGA device.
As for AWS FPGA instances, data transfer performance
improves as the device driver evolves.

5) A significant overhead of communications between
FPGA and VM is introduced in FPGA clouds. The
interconnection bandwidth in FPGA IaaS cloud is lower
than that in a physical environment due to extra memory
copy and immature virtualization, resulting in at least a
10% decrease.

6) Acceleration performance is mostly determined by the
capacity of a certain type of resource on an FPGA board
in FPGA IaaS clouds. For instance, we observe that for
floating-point arithmetic intensive applications, such as
deep learning, digital signal processor is crucial to the
overall acceleration performance.

The contributions of this paper are as follows. First,
we provide a fine-grained approach, including metrics,
benchmarks, and tool kits, to evaluate FPGA IaaS from
VM, inter-communication, and device levels. Second, based
on the approach, we conduct a series of measurements to
demonstrate the real performance of multiple major FPGA
IaaS platforms. Third, according to the findings, we produce
multiple guidelines and takeaways for FPGA Iaa$S tenants.

The rest of this paper is organized as follows. Section 2
introduces related work. In Section 3, we characterize the
performance of FPGA IaaS and introduce its infrastruc-
ture. Section 4 shows the methodology of characterizing
performance of FPGA clouds. Section 5 demonstrates how
device drivers impact on data transfer efficiency between
VM and FPGA. Section 6 presents the PCle virtualization
overhead in FPGA IaaS. In Section 7, we show the results
of accelerating three benchmarks demanding for different
resources on an FPGA. Section 8 concludes the whole paper.

2 RELATED WORK

FPGA in the Datacenter. Putnam ef al. first study the FPGA
deployment in real large-scale datacenters, i.e., the Cata-
pult project [38]. They distribute FPGAs across servers and
present a high throughput and low latency ranking work-
load with resilience. Inspired by this work, several literature
studies how to apply FPGAs at warehouse scale for big-
data processing, network enhancing applications. Weeras-
inghe et al. present a network-attached FPGA integration in
datacenter infrastructure [41]. Lockwood et al. implement



IEEE TRANSACTIONS ON CLOUD COMPUTING

a memcached system with ultra low latency by offloading
the KVS to FPGA in [30]. Huang et al. abstract FPGA
accelerators as a service and provides programming and
runtime environments for large-scale FPGA deployment in
datacenters [24]. An FPGA /Spark system is implemented in
[20] to accelerate DNA sequencing. Li et al. propose a CPU-
FPGA co-design framework to accelerate network functions
in [29].

FPGA in IaaS. Recent works have made the effort to build
cloud integrated with FPGAs. Chen et al. design a prototype
that virtualizes FPGA and make it available for multiple
tenants in [19]. Utilizing the OpenStack framework, Byma et
al. abstract FPGA in a resource pool, where tenants can rent
them as general cloud computing units [17]. Asiatici et al.
design a runtime system that enables FPGAs integrated in
the cloud with marginal performance overheads [15].
FPGA in SaaS. Based on [38], Microsoft Catapult project
builds a new cloud architecture that uses FPGAs to acceler-
ate Bing web search services as well as networking [18]. This
design improves the datacenter deployment and can scale
up two order of magnitude nodes in contrast to the first
infrastructure. Recently, Microsoft company presents Accel-
Net [21], an FPGA-based platform for host SDN processing,
supported by the software and hardware infrastructure of
the previous Catapult work. Azure’s new cloud offering for
FPGA-based machine learning platform enables customers
utilizing drag-and-drop controls to deploy machine learning
services [5].

3 CHARACTERIZING FPGA IAAS PERFORMANCE

Cloud FPGA instances are leveraged to accelerate vari-
ous applications for FPGAs’ hardware-level parallelism.
In this section, first, we reveal performance variation and
performance-cost imbalance in FPGA clouds. Second, we
stress the importance of striking a balance between compute
capacity and data communication in FPGA clouds. Based on
the above investigations, we further dive into FPGA clouds
to explore which factors and how they impact performance.

3.1 Single-node Acceleration Performance of FPGA
laaS

CSPs promise their cloud FPGA instances can achieve high
performance with FPGA acceleration. For example, Amazon
claims AWS FPGA instances can provide up to 100x accel-
eration compared to CPUs for compute-bound applications,
such as genomic analysis [3].

Longing for the high performance offered by FPGA
accelerators, cloud tenants expect to outsource certain ap-
plications to FPGA IaaS. By offloading heavy comput-
ing jobs to FPGA, cloud tenants can accelerate their ap-
plications. However, the true acceleration performance of
FPGA instances still remains unknown. Furthermore, lit-
tle is known about the acceleration performance of other
types of applications, such as streaming jobs. As a result,
to reveal the real acceleration performance for different
types of applications on FPGA laaS platforms, we select
two compute-intensive applications (i.e., digital recogni-
tion and optical flow) and two streaming applications
which are communication-intensive (i.e., spam filtering and

3

face detection) to evaluate the acceleration performance
of various FPGA instances. These applications are typi-
cal benchmarks for FPGA acceleration [44]. We conduct
the measurements on four FPGA instances: Amazon EC2
F1.2xlarge (AWS F1), Alibaba Cloud ECS.f2-c8f1.2xlarge (Ali
F2), Alibaba Cloud ECS.f3-c8f1.2xlarge (Ali F3) and Huawei
Cloud fplc.2xlarge.11 (HW F1). Detailed specifications can
be found in Table 1. All of our experiments are conducted
in cloud FPGA environments, except a few baselines against
FPGA IaaS.

Dataset. The digital recognition application trains digit
classification models with K-nearest-neighbor (KNN) algo-
rithm. 20,000 samples of digits are selected from MNIST [12]
dataset (18,000 samples for training and 2,000 samples for
testing). The spam filtering application uses logistic re-
gression models for classification. In the measurement, we
select 5,000 emails from Apache SpamAssassin Dataset [4],
where 4,500 emails are used for training and 500 emails
are used for validation. The optical flow benchmark utilizes
Lucas-Kanade method [42] to detect objects in sequential
image frames. The dataset is MPI Sintel [16]. ViolaJones
algorithm [40] is employed to complete the face detection.
All the algorithms of benchmarks are hard-coded in cloud
FPGA for acceleration in advance.

Method of Measuring Latency. We prepare datasets and
write them to an FPGA board for acceleration in each round
of experiment. Then the FPGA accelerator is launched by
invoking runKernels of OpenCL library. Before transfer-
ring the data to the FPGA and after retrieving the results
from the FPGA, we use clock_gettime system call to get
start and end time respectively, so as to calculate execution
time on the FPGA (including computation and data transfer
latency). Throughput is derived by dividing the amount of
data with the execution time. Each experiment is repeated
10 times every 24 hours, lasting for 14 days.

Performance Speedup. To evaluate the acceleration perfor-
mance of cloud FPGA instances, we define performance
speedup as f/c, where f is the throughput of cloud FPGA
solutions, and c is the throughput of CPU solutions. For
the CPU solutions, we run the applications on the compute
instance of AWS F1 without offloading jobs to FPGA board.
Performance-Cost Ratio. From the perspective of a cloud
tenant, cost efficiency is another major concern when se-
lecting cloud FPGA platforms. Hence, to evaluate the cost-
efficiency, we define a metric of performance-cost ratio as
f/(pxt), where p is the hourly price of AWS F1 and ¢ is the
execution time.

Figure 1 and Figure 2 plot the comparison of perfor-
mance speedup and performance-cost ratio on each plat-
form (performance-cost ratio is normalized to Ali F3).
Performance Variations in FPGA IaaS. As shown in Fig-
ure 1, on average, the two compute-intensive workloads,
i.e., digital recognition and optical flow, see 40x and 20x
performance speedup, respectively. On the contrary, the two
communication-intensive workloads, i.e., spam filtering and
face detection, only deliver no more than 2x performance
speedup, which is far less than those of the compute-
intensive applications. It is because that the performance
speedup of different applications depends on their paral-
lelism and memory footprint. For example, digital recog-
nition achieves the highest performance speedup since it



IEEE TRANSACTIONS ON CLOUD COMPUTING 4
TABLE 1: VM, PCle and FPGA specifications of each cloud FPGA instance.

Instance Type VM PCle FPGA Price
Physical Processor ‘ vCPU ‘ Hypervisor | Specification | FPGA Card Hourly Price
Amazon EC2 F1.2xlarge (AWS F1) Intel Xeon E5-2686v4 8 Xen PCle 3.0x16 Xilinx VU9P | $1.65 per hour
Alibaba Cloud ECS.f1-c8f1.2xlarge (Ali F1) Intel Xeon E5-2682v4 8 KVM PCle 3.0x8 Intel Arria 10 | $0.87 per hour
Alibaba Cloud ECS.f2-c8f1.2xlarge (Ali F2) Intel Xeon E5-2682v4 8 KVM PCle 3.0x8 Xilinx KU115 | $1.05 per hour
Alibaba Cloud ECS.£3-c8f1.2xlarge (Ali F3) | Intel Xeon Platinum 8163 8 KVM PCle 3.0x16 Xilinx VU9P | $2.06 per hour
Huawei Cloud fplc.2xlarge.11 (HW F1) Intel Xeon E5-2697v4 8 KVM PClIe 3.0x16 Xilinx VU9P | $1.49 per hour

[o)
(=]

I AwWSF1 EE Ali F3
[ AliF2 B HW F1

F YN
oS O

[\
(=]

Performance Speedup
s s

i — i |
Spam Filter. Optical Flow Face Detect.

1

(=)

Digital Rec.

Fig. 1: Performance speedup of each cloud FPGA instance.

has high data-level and instruction-level parallelism by
unrolling and pipelining the loop. Whereas, spam filtering
transfers large volumes of data from host to FPGA resulting
in a high communication to compute ratio, i.e., the data
transfer time is much longer than data processing time
in FPGA. So the data communication bandwidth between
FPGA accelerator and host becomes the performance bottle-
neck. Noting that although AWS F1, Ali F3, and HW F1 have
the same FPGA card and similar CPU configuration, their
performance varies significantly. Such a performance gap
across CSPs may result from their respective virtualization
solutions. In addition, Ali F2 has the lowest hardware con-
figuration and performs the worst, with a 23% performance
degradation on average.

2
9 C AwWSF1I B Al F3
E [ AliF2 [ HW F1
b7
)
Ny
§ 1
:
£
=
5]
[

0

Digital Rec. Spam Filter. Optical Flow Face Detect.

Fig. 2: Performance-cost ratio of each cloud FPGA instance.

Performance-cost Imbalance in FPGA IaaS. Figure 2 il-
lustrates that, overall, Ali F2 (lower-end FPGA instance)
produces higher performance-cost ratio (around 1.4x) com-
pared to AWS F1, Ali F3, and HW F1 (higher-end FPGA
instances), just bounded by 20% performance degradation
on average. HW F1 has the highest performance-cost ratio

compared with AWS F1 and Ali F3 that have similar hard-
ware configuration and comparable performance.
Discussion. These results indicate a market issue of FPGA
IaaS, i.e., there exists severe performance-cost imbalance
in FPGA laaS cloud. For specific applications, the accel-
eration performance shows variation with the same cost.
To adapt such performance-cost imbalance, cloud tenants
are required to develop proper strategies when renting
FPGA instances. We suggest that, for applications with strict
requirements for latency or throughput, such as real-time
video processing, tenants are supposed to rent the high-end
cloud FPGA instances to meet their requirements. On the
contrary, tenants may rent the low-end ones to save cost.

3.2 Multi-node Acceleration Performance of FPGA laaS

Distributed computing in public cloud has attracted atten-
tion in both industry and academia. When a workload out-
reaches the compute capacity of the hardware, using scale-
out solutions to meet demand is a key issue for tenants.
There have been many studies concentrating on exploring
the performance of infrastructure scalability for rapidly
growing data volumes [13], [31]. The performance of scale-
out systems with accelerators is a fundamental problem to
be revealed.

We design a measurement on studying the performance
characteristics of scale-out FPGA cloud platforms. We utilize
an open-source framework, i.e., InAccel [9], for distributed
computing seamlessly integrated with cloud FPGA accel-
erators. Spark-based applications are fully compatible to
the framework and the workloads can be offloaded to
the hardware accelerators using InAccel’s libraries. Taking
advantages of InAccel, we deploy the aforementioned four
applications, i.e., digital recognition, optical flow, spam
filtering and face detection, on AWS F1 to disclose the
scale-out performance of FPGA clouds. We perform the
experiments by increasing the number of FPGA boards from
1 to 2 to 4 to 8 Nodes, where the number of nodes is the
number of FPGA boards connected to a computing instance.
The baseline is the 1 Node case.

Resource Balancing in FPGA IaaS. Figure 3 demonstrates
the results of speedup comparison over CPU among 1 Node
(baseline), 2 Nodes, 4 Nodes, and 8 Nodes. Taking 2 Nodes
experiment as an example, the speedup metric is calculated
by dividing the performance of 2 nodes FPGA system by
the performance of 2 nodes CPU system, finally divides the
baseline case. From the figure, we can notice that the digital
recognition performs 1.5x, 2.2, and 3.0x faster when the
number of FPGA instance nodes increases from 1 to 8. The



IEEE TRANSACTIONS ON CLOUD COMPUTING

spam filtering sees 1.1x, 1.2x, and 1.3x speedup for the
same increase of FPGA instance nodes. The optical flow ap-
plication performs similarly to the digital recognition. While
the performance of spam filtering and face detection shows
relatively lower growing momentum as the system scales
out. We can conclude that the performance improvement of
the two compute-bound applications grows faster compared
to the communication-bound applications.

This performance gap is caused by the variation of
communication to compute ratio, i.e., communication time
dividing computation time. For the compute-intensive ap-
plications, since the compute time is much higher than
data transfer time, it is effective to add FPGA accelerators
to enlarge the compute capacity and reduce the computa-
tion time. However, as for the memory-bound applications,
bringing in more accelerators leads to increasing number
of partitions in RDD and decreasing the processed data
in each node. Due to the inefficiency of small-sized jobs,
the compute-bound applications outperform the memory-
bound applications in a scale-out system.

4
[ 1 Node EEH 4 Nodes
3 [ 2 Nodes HEE § Nodes
)
B2 I
(=
N
| “ ﬂ
0

Digital Rec. Spam Filter. Optical Flow Face Detect.

Fig. 3: Speedup over CPU as the FPGA node increases.

Discussion. From the results, we identify two types of
resources that affect the performance of FPGA cloud most,
i.e., the number of compute units in an FPGA and the
communication bandwidth. We point out that the resource
balancing in FPGA IaaS will benefit the performance of a
scale-out system consisting of FPGA instances. To boost
the performance of multi-node accelerator system with
memory-bound workloads, increasing the communication
bandwidth between FPGA and host should be also taken
into account.

Based on the above analysis, we conduct our work to
offer a fine-grained approach to understand the real perfor-
mance of FPGA IaaS.

3.3 Understanding the Performance of FPGA laaS

To understand the performance of cloud FPGA instances,
we need to first review how FPGA IaaS is constructed. A
cloud FPGA instance basically packs one cloud compute
instance and at least one FPGA board up. For instance, the
architecture of AWS F1 is of one cloud server interconnect-
ing with eight FPGAs. A tenant is allowed to rent an FPGA
instance with one or more FPGAs (at most eight) according
to the requirements for computing capacity of accelerators.
The accelerators offered by FPGA IaaS are ready to use for
tenants once the FPGA instance is initialized. Each FPGA
board is a PCle device of the cloud compute instance, where

5
Host
[ VM #1 ] [VM #2 ] ’VM #m] Virtual
Machine
l Hypervisor l
Virtualized
\ 4 \ / - PCle Bus

Y
|FPGA #l| |FPGA #2| |FPGA #3|---| FPGA #n| FPGA Device

Fig. 4: Architecture of cloud FPGA instance.

the cloud tenant can access the FPGAs without instantiating.
From the perspective of CSPs, the FPGAs are provisioned to
tenants based on a series of virtualization techniques (e.g.,
PCle virtualization) and cloud stacks (e.g., OpenStack in
open source community), which is transparent to tenants.

Interestingly, the compute instances are provisioned
based on virtualized infrastructure, while the FPGA devices
can only be exclusively accessed by one compute instance.
As shown in Figure 4, VMs co-locate in one host and share
all the physical resources of the server, except the FPGA
devices. A compute instance has exclusive access to certain
FPGA via the virtualized PCle bus. Hence, the FPGA IaaS
can be broken into three parts: virtual machine, virtualized
PCle bus, and FPGA device.

By evaluating the performance of the three components
and identifying the corresponding overhead, we can have a
better understanding of FPGA IaaS.

3.3.1

Analysis of cloud VMs’ performance is a well-studied topic.
Existing literature is dedicated to analyzing performance of
CPU, storage, networking, and WAN [28], [32], [37]. As for
cloud FPGA instances, we mainly focus on device drivers
in a VM which enable communications with the FPGA
board. Since device drivers define how data is transferred
between a VM and FPGA boards, they will significantly
impact on the communication efficiency when accelerating
various applications with FPGA boards.

Virtual Machine

3.3.2 Virtualized PCle Bus

PCle virtualization technology enables I/O interconnection
between a virtual machine and an FPGA device. There exist
four state-of-the-art I/O virtualization models supported by
virtualization services vendors, i.e., device emulation, para-
virtualization, passthrough, and single root input/output
virtualization [11]. Compared with other PCle virtualization
techniques, device passthrough assigns PCle devices di-
rectly to a VM bypassing the intervention of host hypervisor,
which significantly boosts the performance of data transfer.
Moreover, it also enables that guest to exclusively access to
the device.

e PCle Virtualization Overhead. Since only passthrough
technique ensures exclusive control of the attached device,
we speculate that it is leveraged to virtualize PCle in
FPGA clouds. As a result, we plan to investigate how
much overhead the passthrough technique introduces.



IEEE TRANSACTIONS ON CLOUD COMPUTING

o Bandwidth Competition. Additionally, though FPGAs are
not shared among VMs in current FPGA IaaS, the PCle
bandwidth may be shared among VMs co-located in the
same server. Considering that preemptive bus bandwidth
allocation can diminish the performance gained from
FPGA accelerator, we need to explore whether PCle band-
width competition exists in FPGA clouds, so as to help
tenants identify the bottleneck of I/O performance.

3.3.3 FPGA Device

An FPGA board mainly consists of FPGA chip and off-chip
memory, i.e., DDR memory. Modern FPGA chips not only
contain configurable logic blocks, i.e., lookup tables (LUTs)
for general-purpose programmability, but also provide ded-
icated hard blocks, e.g., digital signal processor (DSP) for
special functions. Specifically, LUTs can be reprogrammed
to combinations of logic gates; DSP is designed to compute
addition and multiplication arithmetic. Benefiting from the
parallel “hard” circuits, FPGA is widely used to accelerate
various applications.

4 METHODOLOGY

Based on the analysis in Section 3, the performance of
cloud FPGA instances is mainly determined by factors from
three hierarchy levels. So in this section, we characterize the
performance of FPGA IaaS in detail. Specifically, we further
identify the factors that affect performance the most in every
level. Based on the analysis of the critical components of
FPGA IaaS clouds, we propose a fine-grained approach to
evaluate FPGA IaaS.

4.1 Bottleneck of Data Transfer in VMs

In Section 3.3.1, we explain the necessity of exploring the
device drivers that enable data communication between the
VM and FPGA boards. In practice, various factors impact
inter-communication efficiency in FPGA clouds, including
PCle device drivers, caching, input/output memory man-
agement unit (IOMMU), and non-uniform memory access
(NUMA) [33].

However, in the context of cloud FPGA instances, we
just need to consider PCle device drivers, since IOMMU is
a configuration setting for a physical server, which is out of
tenants’ authority. Moreover, there is only one NUMA node
as the default setting for cloud VMs, so all memory accesses
are local while remote memory access does not exist at all.
Finally, since CPU cache is transparent to tenants, we will
not evaluate the caching impacts.

With respect to device drivers, we then discuss the
available access patterns of PCle device through drivers.
Access Patterns of PCle Device. In general, a PCle de-
vice can be accessed using memory map or DMA. Under
memory map mechanism, data is transferred via the CPU’s
address bus. DMA is a hardware mechanism that allows a
device to access host memory bypassing CPU. For DMA
drivers, which defines data exchange of memory, can be
classified as follows:

« Polling v.s. Interrupt. Host either repeatedly polls a status
register or waits for the device to send an interrupt request
to check whether a read /write transaction has finished.

6

o Kernel Space v.s. User Space. Typically, kernel space
driver uses standard system calls, such as pwrite and
pread to access device memory. As for user space driver,
device memory is directly mapped into a block of memory
address in the user space.

In [33], the authors evaluate two types of PCle device
drivers, i.e., Linux kernel driver and DPDK driver [10] in
modern NIC applications. Compared to [33], our measure-
ment is devoted to understanding the performance of PCle
drivers for FPGA in laaS clouds. Basically, the methodolo-
gies are almost the same, i.e., by measuring the latency of
data transmission between hosts and PCle devices. How-
ever, the results of performance are incomparable, because
one is for NIC and the other is for FPGA devices. Never-
theless, results of [33] can provide some hints about what
factors may impact PCle driver performance. For exzample,
comparing to kernel drivers, we see differences in DPDK
that it is implemented with a user-space I/O (UIO) driver
while equipped with dedicated CPU core(s) for polling.
It means that with polling and UIO optimization, DPDK
driver achieves 5% higher throughput than typical kernel
driver.

Different from [33], in a cloud environment, things like
a VM may incur an extra virtual interrupt thus widening
the performance gap between polling and interrupt drivers.
Thereby, we conduct measurements to figure out whether
the additional performance penalty exists in cloud FPGA
instances. Interestingly, we see a 35% gap between polling
and interrupt drivers, which is much higher than 5% men-
tioned above in a bare-metal environment. And the detailed
results are demonstrated in Section 5.

4.2 Virtualization Overhead of Intercommunication

As aforementioned in Section 3.3.2, although PCle
passthrough technique can decrease data transfer latency,
the overhead is still generated due to traversing multiple
layers of virtualization. As a result, concerning the frequent
data transfer between VM and FPGA, it is necessary to shed
light on the PCle virtualization overhead in FPGA IaaS.
Existing literature already identifies the PCle virtualization
overhead in virtual NICs.

In [43], the authors evaluate the performance of receiving
and sending data packets under KVM hypervisor environ-
ment. It is reported that with PCle virtualization, a 10% and
33.2% throughput penalty is seen in the case of receiving
and transmitting data packets under KVM hypervisor envi-
ronment. Different from [43], our measurement studies the
PCle virtualization overhead and bandwidth competition in
FPGA IaaS, where many implementation details are trans-
parent and limited programming interfaces are provided.
We then conduct a measurement study on investigating the
virtualization overhead in FPGA clouds and discussing the
impacts on the performance of intercommunication between
VM and FPGA.

4.3 Benchmark for FPGA Board

We choose three benchmarks which are frequently used for
FPGA acceleration, i.e., single precision general matrix mul-
tiplication (SGEMM), advanced encryption standard (AES)
and fast fourier transform (FFT), three representative types



IEEE TRANSACTIONS ON CLOUD COMPUTING

of applications demanding for different resources of an
FPGA.

e SGEMM. SGEMM is a fundamental operation which
occupies almost 95% time of a deep learning training
model [25]. In [39], the authors present an FPGA-based
deep neural network (DNN) model using SGEMM to
perform convolutions. As aforementioned that DSP is
dedicated to performing the floating-point multiplication
arithmetic, we infer that the number of DSPs will be the
bottleneck in an FPGA-based deep learning application.

o AES. AES is an encryption algorithm that is widely avail-
able on CPU processors. The encryption process involves
bunches of bitwise operations, making it efficient to be
accelerated on an FPGA. Much literature has discussed its
hardware acceleration solutions with FPGA [23].

o FFT. FIT is widely used to perform convolutional neural
network (CNN) models [36]. The implementation of FFT
requires a high DDR bandwidth to promise an efficient
channel between FPGA and host. Therefore we are eager
to know whether DDR will be the bottleneck in an FFT-
based CNN model.

TABLE 2: Benchmark for FPGA board.

Benchmark Benchmark Crucial
Benchmark
Domain Classification Resource
FP! Arithmetic
SGEMM DNN DSsP
Intensive
. Bitwise Operation
AES Encryption LUTs
Intensive
FFT CNN Memory Intensive DDR

L FP = floating point

The performance of the above benchmarks is mostly de-
termined by a certain type of resources on an FPGA, which
we refer to as crucial resources. Table 2 lists our benchmarks
and the speculation about corresponding crucial resources.
We then try to confirm whether our speculation is valid and
help tenants to identify the crucial resource constraints for
their applications.

4.4 Metrics

The metrics we select to measure the performance of FPGA
IaaS are as follows.

4.4.1 Metric for Data Transfer

¢ PCle Throughput. We use PCle throughput to evaluate
the data transfer efficiency between VM and FPGA. The
throughput is calculated by dividing the transfer size by
the transfer time. The data transfer time is measured by
taking a timestamp before issuing packet transactions and
taking another timestamp at the end.

e PCle Latency. We use PCle latency to evaluate the data
transfer speed in a single way. In this case, the PCle
latency is equal to the data transfer time.

4.4.2 Metric for FPGA Board

o Throughput. We take data traffic which can be processed
by FPGA per second to evaluate FPGA acceleration ef-

7

ficiency. It is calculated by data traffic size divided by
execution time during acceleration on FPGA board.

« Latency. The latency represents the time delay of offload-
ing jobs to external accelerators. It is the sum of FPGA
processing time and the data transfer time.

4.5 Measurement Setup

Cloud FPGA Instance Specification. We rent five types
of cloud FPGA instances from AWS, the biggest cloud
provider in the world, Alibaba Cloud and Huawei Cloud,
the biggest cloud providers in China. The instances are
AWS F1.2xlarge (AWS F1 for short), Alibaba Cloud ECS.f1-
c8f1.2xlarge, ECS.£2-c8f1.2xlarge and ECS.f3-c8f1.xlarge (Ali
F1, Ali F2 and Ali F3 for short, respectively) and Huawei
Cloud fplc.2xlarge.11 (HW F1 for short). Table 1 shows the
hardware configuration of FPGA instances of Amazon EC2,
Alibaba and Huawei cloud.

Amazon FPGA Instance Environment. AWS provides an
FPGA Developer AMI for its cloud FPGA instance, where
users can easily develop and deploy the FPGA acceleration
applications. The AMI is a virtual machine image installed
with an operating system as well as requisite services. In our
experiments, we use the FPGA Developer AMI-1.4.0 basing
on 64-bit CentOS 7.3 operating system. Besides, the FPGA
Developer AMI also contains necessary software, simulation
interfaces, high-level programming runtime environments
and the PCle DMA driver.

Alibaba FPGA Instance Environment. Similarly, Alibaba
Cloud also offers operating system images that contain req-
uisite tools, software and licenses. Here we conduct a series
of measurements on three types of Alibaba FPGA instances,
ie, Ali F1, Ali F2 and Ali F3. For Ali F1 instances, they
are booted with FaaS F1 Image V1.1_dropl_drop15. As for
Ali F2 instances, they are booted with FaaS F2 Image V2.4.
And Ali F3 instances are booted with FaaS_F30010_0218
Image. All the VM images aforementioned are basing on
64-bit CentOS 7.3.

Huawei FPGA Instance Environment. Huawei Cloud
equips HW F1 instances with a CentOS 7.3 64-bit Image
with pre-installed software for FPGA development. The
detailed information of developing environment across the
five FPGA instances is listed in Table 3.

Method of Measuring Latency. We prepare a string of
characters which is randomly generated for each round of
data transaction. Before each transaction begins, we use
clock_gettime system call which provides nanosecond
resolution to get start time. After writing data to FPGA, we
invoke fsync to make sure all the data has been transmitted
to the FPGA board. Then we use another clock_gettime
system call to get end time. PCle latency is calculated by
subtracting the start time from the end time. For each set
of data, the experiment is repeated 10 times and average
latency is calculated as a final result.

5 DRIVER EFFICIENCY IN VIRTUAL MACHINE

FPGA clouds are easy for programming owing to a set of
mature programming interfaces including the data transfer
interface with FPGA device. Taking DMA transaction as an
example, for a cloud tenant, the interfaces mask all details



IEEE TRANSACTIONS ON CLOUD COMPUTING
TABLE 3: FPGA Image and OS.

] \ FPGA Image os
AWS F1 AMI-1.4.0 64-bit Centos 7.3
Ali F1 Faa$S F1 Image V1.1_dropl_drop15? | 64-bit Centos 7.3
Ali F2 Faa$S F2 Image V2.43 64-bit Centos 7.3
Ali F3 FaaS_F30010_0218* 64-bit Centos 7.3
HW F1 CentOS 7.3 64-bit with sdx® 64-bit Centos 7.3

! https:/ /aws.amazon.com/marketplace/pp/B06VVYBLZZ

2 https:/ /market.aliyun.com/products /57742013 /cmjj022538.html
3 https:/ /market.aliyun.com/products/57742013/ cmjj022540.html
% The image is a shared image from Alibaba Cloud

5 The image id is 0328c25e-c840-4496-81ac-c4e01b214b1f

TABLE 4: Available DMA IP, drivers and interfaces.

] \ DMA IP | DMA Driver DMA Interfaces

Xilinx pwrite/pread or
AWS F1 Kernel Space
DMA IP lseek+write/read
. Intel
Ali F1 User Space fpgaDmaTransferSync
DMA IP
. Xilinx pwrite/pread or
Ali F2 Kernel Space
DMA IP lseek+write/read
Xilinx it dor
Al F3 Kernel Space purite/prea
DMA 1P lseek+write/read
Xilinx it dor
HW F1 ' Kernel Space purite/prea
DMA IP lseek+write/read

about how DMA engine interacts with kernels and endpoint
device while facilitating programming. However, potential
performance improvement is also hidden in the high-level
programming abstractions. Therefore, in this section, we
will disclose the device drivers’ impacts on PCle perfor-
mance to aid tenants winning maximum performance gains.

Before showing the experimental results, we will de-
scribe some necessary measurement setups. We set identical
parameters for PCle configuration, where max payload size
is 128 bytes and max read request size is 128 bytes. For all
experiments, we carefully control the cache being warmed
before the test.

5.1 PCle Performance of DMA Drivers

Transferring data via DMA basically requires DMA IP
cores provided by board vendors, the corresponding DMA
drivers and DMA interfaces, as shown in Table 4. Cloud
providers will customize the drivers for optimization. For
example, Amazon provides two suits of DMA drivers, i.e.,
XDMA and EDMA, where the latter one is customized
for multithread programming. To explore the performance
of DMA data transfer, we first evaluate the performance
of DMA drivers running in kernel space and user space.
Then, for kernel space DMA drivers, we further investigate
the performance of XDMA and EDMA under polling and
interrupt mode, respectively.

8

5.1.1 Performance of DMA Drivers in Kernel Space and
User Space

Figure 5 and Figure 7 plot the write and read throughput
performance of DMA drivers, respectively. The results are
normalized to their theoretical throughput. Figure 6 and Fig-
ure 8 demonstrate the write and read latency performance
of DMA drivers, respectively. As shown in Figure 5, it is
obvious that user space driver outperforms kernel space
driver remarkably, reaching 60% of its theoretical through-
put, while the maximum throughput of kernel space DMA
drivers is only no more than 30%. Compared with user
space driver, kernel space driver will incur extra overhead
due to memory copy between kernel space and user space.
Since the memory allocated by the operating system is
located at user space while the memory that can be directly
accessed by the kernels lies in kernel space, the memory
copy operations incur extra performance overhead.

Zg [ AWS-F1-Kernel Space .
'—‘8 = 50 [ Ali-F1-User Space
s 2 [ Ali-F2-Kernel Space
) '§040 I Ali-F3-Kernel Space
—E 5 30 I HW-F1-Kernel Space
B E20
S ’_H_h
0 LTk

64B 1KB 16KB 256KB 4MB 64MB

Data Size

Fig. 5: DMA write throughput of each FPGA instance.

1000
[ AWS-F1-Kernel Space
. 100 [ Ali-F1-User Space
w
g [ Ali-F2-Kernel Space
E 1o i
2 [ Ali-F3-Kernel Space
§ 1 I HW-Fl-Kernel Space 8,0, ~
= s5333
00 UHE [THm [THM
64B 1KB 16KB 256KB 4MB 64MB
Data Size

Fig. 6: DMA write latency of each FPGA instance.

100
[ AWS-F1-Kernel Space _
= 80 [ Ali-F1-User Space []
'% 260 [ Ali-F2-Kernel Space
s .gn I Ali-F3-Kernel Space
é') g 40 I HW-F1-Kernel Space
o =
Sh=
20
0 l‘ITh
64B 1KB 16KB 256KB 4MB 64MB
Data Size

Fig. 7: DMA read throughput of each FPGA instance.



IEEE TRANSACTIONS ON CLOUD COMPUTING

1000
1 AWS-F1-Kernel Space
__ 100 [ Ali-F1-User Space PRG-I
2 [ Ali-F2-Kernel Space SRR
E 10 I Ali-F3-Kernel Space T
S 1 I HW-F1-Kernel Space SSsEs
8 2% =n gm.gn B ;e 03588
0.1 | 38283 58838 5833 =g
64B 1KB 16KB 256KB 4MB 64MB
Data Size

Fig. 8: DMA read latency of each FPGA instance.

In Figure 7, we observe that DMA read performance is
consistent with the case of DMA write. User space driver
outperforms kernel space driver with a little improvement.
Since read performance and write performance present a
coherent trend of variation, in the rest of the paper, we only
show the write performance results.

As shown in Figure 6 and Figure 8, we find that when

the data size is smaller than 16 KB, PCle latency is measured
roughly in tens of nanoseconds. When the data size exceeds
256 KB, PCle latency grows fast.
Insight. In general, the user space DMA driver has a no-
ticeable performance improvement compared to the kernel
space one. Cloud providers are responsible to optimize
the general drivers, so as to maximize the performance
gained from tenants. In addition, communication latency,
i.e.,, PCle latency is significant as data size grows large.
Cloud providers also need to reduce PCle latency so that
FPGA instances can meet latency-sensitive scenarios, such
as networking applications.

5.1.2 Performance of DMA Drivers under Polling and Inter-
rupt Mode.

Figure 9 and Figure 10 plot the PCle DMA write through-
put and write latency of AWS F1 driven by XDMA and
EDMA drivers under polling mode and interrupt mode.
EDMA driver is customized for multithread programming
provided by AWS F1. Overall, we can find that DMA drivers
in polling modes are always better than interrupt modes. It
is because that the DMA interrupt event occurs in kernel
space. CPU has to switch context between the interrupt
event and the calling event in interrupt mode, incurring
extra overhead. In addition, the performance gap between
pooling mode DMA and interrupt mode DMA is as high
as 1.35x which is much larger than that in a bare-metal
environment (just less than 5%) [33]. We suspect the reason
is that extra virtual interrupt controlled by virtual machine
manager incurs more overheads. Although polling mode
drivers outperform the interrupt mode driver, they are at the
cost of consuming significant CPU resources. So targeting
compute-intensive applications, it will be a great limitation.

Furthermore, under polling mode, EDMA driver out-
performs XDMA significantly (almost 1.6 times higher). In
the case of interrupt mode driver, the increase of EDMA
write performance is less than 15%. EDMA simplifies the
DMA driver by pruning off inactive DMA functionality and
only reserving the data transaction functionality’. Therefore,

9

_ 3000 1 =3 EpmA-INT
w
& 2500 | 3 EDMA-POLL
% 2000 EE XDMA-INT
2 1500 | HEE XDMA-POLL
=
21000
2
= 500
H

0

R
64B 1KB 16KB 256KB 4MB
Data Size

64MB

Fig. 9: DMA write throughput of AWS F1 instance driven
by XDMA and EDMA under polling and interrupt mode.

1000 [ EDMA-INT

100 | =3 epmA-POLL '

935

33.406
23.098
38.814

37

2 10 |EE XDMA-INT §§§§
> 1 |EEE XDMA-POLL 8438
g 01|88z St-g °C°f
.| < o

| (O (1

0.001

64B 1KB 16KB 256KB 4MB 64MB
Data Size

Fig. 10: DMA write latency of AWS F1 instance driven by
XDMA and EDMA under polling and interrupt mode.

EDMA can achieve better performance than XDMA. How-
ever, the inherent context switch overhead of interrupt mode
driver makes it hard to have further improvement.

We also offer a brief view of AWS F1 DMA performance
when FPGA Images upgrade. As shown in Figure 11, the
write throughput of PCle DMA varies as the EDMA driver
evolves. We note that the performance is improved as the
latest DMA drivers that relax the DMA timeouts under
interrupt mode.

Azooo [ XDMA-INT [ EDMA-INT
%2}
oA 1600
e
= 1200
2
=, 800
=]
£ 400
]

0

Vil V1.3.0 V1.3.3 V1.4.0
DMA Drivers

Fig. 11: PCle DMA write throughput of AWS F1 instance
driven by different versions of EDMA and XDMA drivers.

Insight. From the data shown above, optimization of DMA
drivers significantly improve the data transfer performance,
e.g., the EDMA drive prunes off seldom-used DMA fea-

5. XDMA is an officially provided DMA driver that contains com-
plete functionality, including the basic data transaction, inactive bypass
mode, debugging over PCle and etc. More details can be found in [6].



IEEE TRANSACTIONS ON CLOUD COMPUTING

tures, and simplify the data structure which harvests about
60% throughput increasing. In addition, the DMA drivers
provisioned by cloud providers still have room for further
improvement. Moreover, since the the mechanism of device
drivers is so complicated for tenants to fully understand
and make appropriate choices, we highly recommend cloud
providers to offer a tuning tool for device drivers that can
adapt user applications.

5.2 PCle Performance of Memory Map

Apart from DMA, an alternative data transfer mechanism
is memory map. The memory of a PCle device is mapped
into a memory map region. If the host initiates a memory
read request to the PCle device, it will fetch the data from
the memory map region which corresponds to the physical
memory address of the PCle device.

2000
@ 3 Memory Map [ DMA
m
% 1500
21000
=
=
o 500
=
H

0

IKB 16KB 256KB 4MB 64MB

Data Size

Fig. 12: PCle write throughput of DMA and memory map.

Figure 12 demonstrates the PCle write throughput of
AWS F1 under DMA and memory map. The DMA driver
here refers to XDMA driver under interrupt mode. As the
data transfer size varies from 64B to 64 MB, we can observe
that the throughput of memory map first increases from
400 MB/s to around 1,300 MB/s then remains steady. DMA
throughput is much lower when dealing with small-sized
data (less than 16 KB). When transfer data size is bigger,
DMA presents a slightly higher performance.

The throughput of memory map remains unchanged
when data size is bigger than 1 KB because CPU limits its
transfer efficiency. Memory map consumes significant CPU
resources when the data traffic ramps up, resulting in long
cycles waiting for data to arrive or writing to memory.

Compared to DMA, memory map can be leveraged to
transfer small-sized data occasionally, harvesting significant
performance gain under small data loads.

6 VIRTUALIZATION OVERHEAD OF INTERCOMMU-
NICATION

In order to investigate the overhead introduced in cloud
FPGA platform, we conduct two experiments on our local
server enabling and disabling PCle passthrough to analyze
its overhead. The experiment enabling PCle passthrough is
performed in a guest virtual machine to emulate the FPGA
cloud environment. Another experiment is performed in
a physical server. The FPGA board we use in the local
environment is Xilinx XC709 with PCle Gen3 x8, and the
physical server is Dell R740. The DMA IP core and DMA
driver in local environment are kept the same as that of Ali
F1 instance.

10

7000
[ Ali-F1 BB Physical-Passthrough
6000 [ Purely-Physical

5000
4000
3000
2000
1000

0

64B IKB 16KB 256KB 4MB 64MB

Throughput (MB/s)

Data Size

Fig. 13: PCle write throughput of Ali F1 and local server.

6.1 PCle Virtualization Overhead

Figure 13 plots the DMA write performance of Ali F1 com-
pared with that in local environment where the FPGA board
is directly plugged to the physical server. Purely physi-
cal is the experiment without any virtualization. Physical
passthrough enables PCle virtualization and is performed
in a VM on our local server. As shown in the figure, DMA
throughput reaches the peak when the data size is 16 KB
in our local environment. However, the PCle bandwidth
is fully utilized only when the data size is as large as 64
MB in the cloud. Furthermore, PCle passthrough degrades
the DMA performance of local server by around 10%, even
more depending on the transfer data size. And the DMA
performance of Ali F1 (around 4,800 MB/s) is slightly worse
than that of local passthrough (i.e., 5,000 MB/s).

6.2 Bandwidth Competition

To further explore whether PCle bandwidth competition
exists in the cloud, we conduct another experiment that
simultaneously transmits data through all four channels
of DMA on local server and on the cloud FPGA instance,
respectively. As shown in Table 5, we can observe that the
overall PCle throughput is same, i.e., 5,200 MB/s in our local
environment. In contrast, the total throughput is improved
by 2.8x while the PCle throughput degrades 30% for each
channel.

TABLE 5: PCle DMA write throughput when transmitting
data through one channel and four channels.

Cloud (MB/s) | Local (MB/s)
Each | Total | Each | Total
1x Channel | 1000 | 1000 | 5200 | 5200
4x Channels 700 2800 1300 5200

Since we cannot restore the same virtualization strategy
as FPGA cloud leverages, in this part, we just prove the
existence of PCle virtualization overhead in cloud. From
our experiment, the local server suffers from a 10% of
performance penalty, we can suspect a similar penalty is
also experienced by the FPGA clouds. Besides, we identify
PCle bandwidth competition will degrade considerable I/O
performance of individual tenant.

Insight. Based on the above measurements (including Sec-
tion 5), compared with FPGA which is directly plugged



IEEE TRANSACTIONS ON CLOUD COMPUTING

in the physical server, I/O performance of cloud FPGA
instances significantly degrades to half its theoretical band-
width due to the overhead introduced by a series of soft-
ware, including drivers, hypervisor, and so on. As a result,
it is necessary for CSPs to optimize the I/O performance,
so as to mitigate the data transfer overhead in cloud. Only
when CSPs offer sufficient quality of service, can tenants
enjoy the maximum acceleration performance benefits.

7 PERFORMANCE OF FPGA BOARD

Cloud tenants typically rent cloud FPGA instances to accel-
erate deep learning, complex data analysis applications and
etc. As applications vary, tenants should select appropriate
instance types to meet their needs. In this section, we
choose three representative FPGA acceleration benchmarks,
respectively SGEMM, AES and FFT to evaluate the FPGA
instances.

7.1 SGEMM Acceleration

We choose SGEMM with input of floating point matrices
to evaluate the performance of FPGA instances running
floating-point arithmetic intensive workloads. The standard
form of SGEMM is typically defined as follows.

C + aAB + C,

where A = [a;j]nxkx, B = [bijlkxm, and C = [cij]nxm
are dense matrices. Without affecting any results, we simply
assume N=K=M in setup.

o

o~ 140
& 150 | B3 AWSFI ~
S 100 | B3 Ali-FL []
& g0 | 2 Alir2
5 0 B Ali-F3
& Bl HW-F1
ob 40
=
e 20 |:| | .
=
F
64 128 25

6 512
Matrix Size

Fig. 14: SGEMM throughput of each cloud FPGA instance.

1024 2048

10000

1000 [ aws-F1 3 Ali-F1 3 Ali-F2
o~ B3 Ali-F3 [ HW-FI a0 fm
g 100 o
b= < 38393
o 1 |52888 8gR38 S-S
< 35533 sgess
T |

0.01

64 128 256 512 1024 2048

Matrix Size

Fig. 15: SGEMM latency of each cloud FPGA instance.

Figure 14 and Figure 15 illustrate the SGEMM through-
put and latency across FPGA instances with increasing
matrix size. In general, for all the FPGA instances, the

11

throughput increases as the matrix size becomes larger.
Specifically, Ali F1 instance outperforms the other four
with the peak throughput of 116 GFLOPS. Ali F2 instance
produces a steady but worst throughput ranging from 30
to 60 GFLOPS. The principle of SGEMM is decomposing
large matrix into small matrices recursively before compu-
tation. The block-wise operations allow a fully pipelined
implementation in FPGA with remarkable speedups, es-
pecially when the matrices are very large. Therefore, the
performance is better in the context of larger matrix size.
In addition, performing floating point operations especially
multiplications consumes lots of DSP resources. Since Ali F1
FPGA provides over one thousand optimized floating-point
DSP blocks to support floating point operations, it gains
considerable acceleration performance. AWS F1, Ali F3 and
HW F1 also equip thousands of DSP slices and achieves
comparable throughput, but Ali F2 is limited by its DSP
resources, thus it quickly reaches its compute capacity and

performs the worst.

1024 2048

140
[ 2K @O 8K EE 32K

64 128 256 512

Matrix Size

[ —
DR = \]
(=R e - = =]

Throughput (GFLOPS)
o
(=)

(=)

Fig. 16: SGEMM throughput of Ali F1 when allocating
different memory sizes on FPGA.

Apart from DSP resources, the performance of SGEMM

is sensitive to both temporal and spatial locality of data.
Therefore, we conduct another experiment on Ali F1 in-
stance to explore the impacts of allocated memory size on
SGEMM throughput performance. As shown in Figure 16,
as the matrix size increases to 1024x1024, the throughput
reaches the peak value of 100 GFLOPS when allocating
enough memory size (32 KB). On the contrary, as the size
of local memory decreases, the SGEMM throughput gets
lower. Because input matrices are frequently read, allocating
adequate memory for buffering the data locally can sig-
nificantly reduce miss rates and further decrease the total
execution time.
Insight. DSP resources are ideal choices for floating point
operations. We take SGEMM as one example to advise ten-
ants to focus on the DSP slices if their applications involve
a large volume of floating point operations.

7.2 AES Acceleration

AES is an encryption algorithm that requires a large amount
of LUTs since it involves a bunch of logic gate operations
and shift operations. In this experiment, we conduct an AES-
128 ECB decryption task on FPGA and verify the results on
CPU.

As plotted in Figure 17 and Figure 18, we observe that
for AES encryption, the performance of AWS F1, Ali F2, Ali



IEEE TRANSACTIONS ON CLOUD COMPUTING

F3 and HW F1 instances are comparable, which are all based
on Xilinx FPGA chips, outperforming that of Ali F1, which
is based on Intel FPGA chips. As the encryption algorithm
barely buffers data, the performance does not change much
as the dataset size grows larger. We can easily understand
that Xilinx FPGA instances have bare performance differ-
ences since they share the same FPGA architecture.

— 4000 [ AWS-F1 [ Ali-F1 (3 Ali-F2
E EE Ali-F3 I HW-F1

3000
2
2. 2000
=
2
2 1000
=
[=

0
3MB 30MB 300MB

Dataset Size

Fig. 17: AES throughput of each cloud FPGA instance.

1000 1 o AwsF1 E AlFL BRI AR 5 .,
N Ali-F3  EE HW-F1 293330
g 100 =
~ o ﬂ ~ o0 ~
> 5388 8
& S " g g g
— ghgts g
AR

30MB 300MB

Dataset Size

Fig. 18: AES latency of each cloud FPGA instance.

Insight. We take AES as an example to illustrate that dealing
with compute-intensive workloads which involve bunches
of logic gates operations. Tenants can focus on the capacity
of the logic cells, provided by each FPGA board when
accelerating complex applications.

7.3 FFT Acceleration

FFT is a mathematical method that changes the signals from
time domain to frequency domain to analyze its frequency
characteristics. Researchers pursue deploying FFT in deep
learning applications to train CNN model leveraging its
Fourier convolutions features. Table 6 shows that dealing
with large volume of data, AWS F1, Ali F3 and HW F1
instances can achieve higher throughput and lower latency
compared with the other instances.

DDR Bandwidth. In order to verify the above results, we
deploy a measurement to claim the DDR bandwidth. To
reduce the impacts of PCle latency, we pipeline the reading
and writing to reduce the number of transfers. To make it
clear, if the transfer size is 64 MB, the number of blocks
is 64, and then for each block, the data size is 1 MB.
We simultaneously read/write 64 blocks of data, and the
transfer time is reduced to 1/64 compared with no pipeline.
In general, the bandwidth of DDR is proportional to its
number of banks, so in our experiment, we use the least

12
TABLE 6: FFT throughput and latency.

’ ‘ FFT Length | Throughput ‘ Latency

AWS F1 1024 5500 MB/s 85.0ms
Ali F1 1024 3640 MB/s 128.4ms
Ali F2 1024 3860 MB/s 121.1ms
Ali F3 1024 5420 MB/s 86.2ms

HW F1 1024 5470 MB/s 85.5ms

one, i.e., two DDR banks bandwidth to demonstrate their
performance. Table 7 lists the DDR configurations.

TABLE 7: DDR specifications.

‘ Storage Size | Theoretical Bandwidth | Frequency

AWS F1 4x16GB 68 GB/s 2133 MHz
Ali F1 2x8GB 34 GB/s 2133 MHz

Ali F2 4x4GB 76.8 GB/s 2400 MHz

Ali F3 4x16GB 68 GB/s 2133 MHz

HW F1 4x16GB 68 GB/s 2133 MHz

As demonstrated in Figure 19, with the bulk of data
growth, the bandwidth of DDR increases significantly. Fur-
thermore, DDR in AWS F1, Ali F3 and HW F1 instances gets
a better performance with a bandwidth of over 26 GB/s,
much higher than that of Ali F1 and Ali F2, whose DDR
bandwidth only reach around 5 GB/s and 10 GB/s, respec-
tively. Such results coincide with that in Table 6, where AWS
F1, Ali F3 and HW F1 have the highest performance under
FFT workloads.

30000

- [ AWS-F1 ~ N
é’ 25000 | 3 Ali-F1 =
S 20000 1 Ali-F2
= B Ali-F3
é 15000 | HEE HW-FI
2010000
e
= 5000
=, I

0

256KB IMB 4MB 16MB 64MB 256MB

Data Size
Fig. 19: DDR throughput of each cloud FPGA instance.

Insight. DDR resource plays a critical role in improving the
performance of memory-intensive workloads. As a result,
cloud tenants should select a cloud FPGA instance with high
DDR bandwidth for achieving better throughput.

8 CONCLUSION

By empirically analyzing the performance of cloud FPGA
instances, this paper proposes a fine-grained approach to
understand FPGA IaaS. First of all, we evaluate the accel-
eration performance to provide an overall understanding
of FPGA IaaS. Motivated by the observations of the per-
formance gain of single-node and multi-node cloud FPGA
platforms, we further explore the performance of cloud



IEEE TRANSACTIONS ON CLOUD COMPUTING

FPGA instances from three aspects, i.e., virtual machine,
virtualized PCle bus, and FPGA device. With respect to vir-
tual machine, we conduct a series of measurements on the
performance of two fundamental data transfer mechanisms,
i.e, DMA and memory map. As for DMA, we focus on
understanding how DMA working mode and DMA drivers
impact the I/O performance between the compute instance
and FPGA boards in public cloud. For virtualized PCle
bus, we examine the overhead of data transfer between
the compute instance and FPGA boards. In terms of FPGA
device, we run various benchmarks ranging from compute-
bound to memory-bound algorithms, including SGEMM,
AES, and FFT, so as to compare how FPGA boards in FPGA
IaaS perform when accelerating various workloads.

D

2)

3)

4)

5)

Our study produces multiple key takeaways:
Concerning the performance-cost imbalance in FPGA
IaaS, we highly suggest that tenants select low-end FPGA
instances for high cost-efficiency as much as possible, un-
less their applications strictly require high performance,
e.g., low latency or high throughput.

Striking a balance between data processing speed and
data transfer speed in FPGA IaaS will benefit the per-
formance of FPGA clouds for various applications. We
suggest that tenants take both factors into account in their
system designs.

Since general DMA drivers provisioned by FPGA
providers require further optimization, tenants need to
choose CSPs who offer customized DMA drivers to
obtain better performance. In the meantime, CSPs are
obligated to improve driver performance to adapt their
cloud platforms.

We identify the PCle overhead of data transfer between
the compute instance and FPGA boards. Tenants need
not to accelerate traffic-intensive workloads in FPGA
IaaS and CSPs are responsible to mitigate the overhead
to meet tenants’ requirements.

For different types of workloads, the acceleration per-
formance is typically determined by one critical kind of
FPGA resources. Tenants can select a proper cloud FPGA
instance based on our results.

REFERENCES

(1]
(2]
(3]
(4]
(5]
(6]

(7]

(8]
(9]

[10]
[11]

Alibaba Cloud FPGA as a Service Instances. https:/ /www.aliyun.
com/product/ecs/fpga/.

Alibaba Cloud FPGA as a Service Instances. https://cloud.
tencent.com/product/fpga.

Amazon EC2 F1 Instances. https://aws.amazon.com/cn/ec2/
instance-types/f1/.

Apache SpamAssassin Dataset. https://spamassassin.apache.
org/old/publiccorpus/.

Azure Machine Learning Service Documentation. https://docs.
microsoft.com/en-us/azure/machine-learning/service/.

DMA /Bridge Subsystem for PCI Express v4.1 Product
Guide. https:/ /www.xilinx.com/support/documentation/
ip_documentation/xdma/v2_0/pgl95-pcie-dma.pdf.

For Intel, Adding Altera, FPGA Hardware Is Easy: Next
Comes Supporting Software. https://www.forbes.com/sites/
kurtmarko/2015/06/09/intel-fpga-software/.

FPGA-accelerated Cloud Server. https://www.huaweicloud.
com/en-us/product/fcs.html.

Inaccel - Accelerated Solutions for the Cloud. https://www.
inaccel.com/.

Intel DPDK. https:/ /dpdk.org/.

Linux Virtualization and PCI Passthrough. https://www.ibm.
com/developerworks/linux/library/1-pci-passthrough/.

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

13

MNIST database of handwritten digits. http://yann.lecun.com/
exdb/mnist/.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, ]J. Levenberg,
R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Va-
sudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow:
A system for large-scale machine learning,” in Proc. of OSDI, 2016.
Y. M. Alkabani, M. W. El-kharashi, and H. S. Bedor, “Hard-
ware/software partitioning of a bayesian spam filter via hardware
profiling,” in Proc. of IEEE International Symposium on Industrial
Electronics, 2006.

M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne,
“Virtualized execution runtime for fpga accelerators in the cloud,”
IEEE Access, 2017.

D. J. Butler, J. Wulff, G. B. Stanley, and M. ]. Black, “A naturalistic
open source movie for optical flow evaluation,” in Proc. of European
Conference on Computer Vision, 2012.

S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and
P. Chow, “Fpgas in the cloud: Booting virtualized hardware accel-
erators with openstack,” in Proc. of IEEE Annual International Sym-
posium on Field-Programmable Custom Computing Machines, 2014.
A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,”
in Proc. of MICRO, 2016.

F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and
K. Wang, “Enabling fpgas in the cloud,” in Proceedings of the 11th
ACM Conference on Computing Frontiers, 2014.

Y.-T. Chen, J. Cong, Z. Fang, J. Lei, and P. Wei, “When spark
meets fpgas: A case study for next-generation DNA sequencing
acceleration,” in Proc. of HotCloud, 2016.

D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung,
H. K. Chandrappa, S. Chaturmohta, M. Humphrey, ]J. Lavier,
N. Lam, F. Liu, K. Ovtcharov, ]J. Padhye, G. Popuri, S. Rain-
del, T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,
A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A. Maltz,
and A. Greenberg, “Azure accelerated networking: Smartnics in
the public cloud,” in Proc. of NSDI, 2018.

J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and
energy comparison of fpgas, gpus, and multicores for sliding-
window applications,” in Proc. of FPGA, 2012.

T. Good and M. Benaissa, “Aes on fpga from the fastest to the
smallest,” in Proc. of 7th International Workshop of Cryptographic
Hardware and Embedded Systems, 2005.

M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi, T. Condie,
and J. Cong, “Programming and runtime support to blaze fpga
accelerator deployment at datacenter scale,” in Proc. of ACM
Symposium on Cloud Computing, 2016.

Y. Jia, “Learning semantic image representations at a large scale,”
Ph.D. dissertation, UC Berkeley, 2014.

S.-W. Jun, M. Liu, K. E. Fleming, and Arvind, “Scalable multi-
access flash store for big data analytics,” in Proc. of FPGA, 2014.
S.-W. Jun, M. Liu, S. Lee, J. Hicks, ]J. Ankcorn, M. King, S. Xu, and
Arvind, “Bluedbm: An appliance for big data analytics,” in Proc.
of ISCA, 2015.

A.Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: Comparing
public cloud providers,” in Proc. of IMC, 2010.

X. Li, X. Wang, F. Liu, and H. Xu, “Dhl: Enabling flexible software
network functions with fpga acceleration,” in Proc. of ICDCS, July
2018.

J. W. Lockwood and M. Monga, “Implementing ultra low latency
data center services with programmable logic,” in Proc. of IEEE
Annual Symposium on High-Performance Interconnects, 2015.

D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh,
J. Kim, and H. Esmaeilzadeh, “Tabla: A unified template-based
framework for accelerating statistical machine learning,” in Proc.
of HPCA, 2016.

M. Mao and M. Humphrey, “A performance study on the vm
startup time in the cloud,” in Proc. of ICC, 2012.

R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. Lépez-
Buedo, and A. W. Moore, “Understanding pcie performance for
end host networking,” in Proc. of SIGCOMM, 2018.

E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. O. G.
Hock, Y. T. Liew, K. Srivatsan, D. J. M. Moss, S. Subhaschandra,



IEEE TRANSACTIONS ON CLOUD COMPUTING

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

and G. Boudoukh, “Can fpgas beat gpus in accelerating next-
generation deep neural networks?” in Proc. of FPGA, 2017.

M. J. H. Pantho, F. Hategekimana, and C. Bobda, “A system on
fpga for fast handwritten digit recognition in embedded smart
cameras,” in Proc. of ICDSC, 2017.

H. Pratt, B. Williams, F. Coenen, e. M. Zheng, Yalin”, ]J. Hollmén,
L. Todorovski, C. Vens, and S. Dzeroski, “Fcnn: Fourier con-
volutional neural networks,” in Machine Learning and Knowledge
Discovery in Databases. ~ Springer International Publishing, 2017,
pp- 786-798.

X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Under-
standing performance interference of i/o workload in virtualized
cloud environments,” in Proc. of ICC, 2010.

A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J. Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and
D. Burger, “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proc. of ISCA, June 2014.

G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating
deep convolutional networks using low-precision and sparsity,”
CoRR, vol. abs/1610.00324, 2016. [Online]. Available: http:
/ /arxiv.org/abs/1610.00324

Viola, Jones, and Snow, “Detecting pedestrians using patterns of
motion and appearance,” in Proceedings Ninth IEEE International
Conference on Computer Vision, Oct 2003, pp. 734-741 vol.2.

J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-
attached fpgas for data center applications,” in Proc. of International
Conference on Field-Programmable Technology (FPT), Dec 2016.

Z. Wei, L. Dah-Jye, and B. Nelson, “Fpga-based real-time optical
flow algorithm design and implementation,” Journal of Multimedia,
vol. 2, 09 2007.

J. E. Zazo, S. Lopez-Buedo, Y. Audzevich, and A. W. Moore, “A
pcie dma engine to support the virtualization of 40 gbps fpga-
accelerated network appliances,” in Proc. of International Conference
on ReConFigurable Computing and FPGAs (ReConFig), 2015.

Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Feath-
erston, Y.-H. Lai, G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang,
“Rosetta: A realistic high-level synthesis benchmark suite for
software programmable fpgas,” in Proc. of FPGA, 2018.

Xiuxiu Wang received her B.Eng. degree in the
School of Optical and Electronic Information,
Huazhong University of Science and Technol-
ogy, China. She is currently a M.Eng. student in
the School of Computer Science and Technol-
ogy, Huazhong University of Science and Tech-
nology, China. Her research interests include
cloud computing and FPGA acceleration.

Yipei Niu received his B.Eng. degree from
Henan University, and M.Engr. degree from
Huazhong University of Science and Technol-
ogy. He is currently a Ph.D. student in the
School of Computer Science and Technology,
Huazhong University of Science and Tech-
nology, China. His research interests include
cloud computing, container networking, server-
less computing, and FPGA acceleration.

{ &

o

7=

14

Fangming Liu received the B.Eng. degree from
the Tsinghua University, Beijing, and the Ph.D.
degree from the Hong Kong University of Sci-
ence and Technology, Hong Kong. He is cur-
rently a Full Professor with the Huazhong Uni-
versity of Science and Technology, Wuhan,
China. His research interests include cloud com-
puting and edge computing, datacenter and
green computing, SDN/NFV/5G and applied
ML/AI. He received the National Natural Science
Fund (NSFC) for Excellent Young Scholars, and

the National Program Special Support for Top-Notch Young Profession-
als. He is a recipient of the Best Paper Award of IEEE/ACM IWQoS
2019, ACM e-Energy 2018 and IEEE GLOBECOM 2011, as well as the
First Class Prize of Natural Science of Ministry of Education in China.

Zichen Xu received his Ph.D. degree from the
Ohio State University. He is a full professor
in Nanchang University, China. His research
spans in the area of data-aware complex sys-
tem, including profile analysis, system optimiza-
tion, and data management system design / im-
plementation.



