
Cost-Effective Service Provisioning
for Hybrid Cloud Applications

Bin Luo, Yipei Niu, and Fangming Liu?

Key Laboratory of Services Computing Technology and System,
School of Computer Science and Technology,

Huazhong University of Science and Technology, China.

Abstract. A hybrid cloud, which combines a private cloud and a public
cloud, has become more and more popular. For most corporations, they
leverage one public cloud. However, with fierce competition among pub-
lic cloud providers, public cloud services change frequently, which may
lead to service unavailability and a less cost-effective hybrid cloud solu-
tion. As a result, leveraging multiple public clouds in the hybrid cloud is
a potential solution. In this paper, we identify such a problem in current
hybrid cloud and analyze the necessity of load balancing for hybrid cloud
applications. Focusing on cost minimization and performance guarantee,
we propose a Least Cost per Connection (LCC) algorithm so as to choose
the most cost-effective clouds along with adapting changes among mul-
tiple public clouds. The simulation results show that our solution can
significantly decrease the outsourcing cost as well as guarantee QoS of
applications.
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1 Introduction

A hybrid cloud, which combines a private cloud and a public cloud, has become
more and more popular. The state of the cloud report from RightScale points
out that, among all the enterprise respondents, 55% of them expect to use hybrid
clouds [1].

However, for most corporations, they deploy their applications on single pub-
lic cloud. First, cloud computing platforms sometime breakdown and update bug,
which may influence their business. Second, cloud providers offer discount to at-
tract users and occupy cloud computing market. For example, the price of AWS
drops 12 times in 2013 while Google Compute Engine [2] made a cumulative
reduction of 38 percent in prices from January to October in 2014. When the
price drops, deploying applications in single cloud makes it difficult to switch to
other providers for lower price. Third, since more corporations join in the cloud
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market, cloud users are willing to avoid provider lock-in. As a result, deploy-
ing applications in multiple public clouds can contribute to obtaining a more
cost-effective and stable hybrid cloud solution.

When leveraging multiple public clouds, we face the following challenges.
First, since cloud users can leverage multiple clouds, it is challenging to distribute
workloads among private and public clouds so as to obtain a cost-effective solu-
tion. Second, as cloud computing platforms sometime breakdown or update, it
may lead to service unavailability or performance degradation. Such maintenance
makes it more difficult to derive a cost-effective solution. Third, cloud computing
price changes with time. Cloud users always want to use the most cost-effective
cloud products. Deploying applications on unsuitable cloud products may cost
more money and make applications inefficient.

To address these problems, we propose a cost-effective service for hybrid cloud
applications, which selects the best public cloud for out-sourcing and adapts
cloud price changes dynamically, along with provisioning global load balancing.
The system uses a two-tier load balancing mechanism, provisioning virtual ma-
chine (VM) and cloud level load balancing. The system firstly chooses the best
instance on each cloud for certain applications using CloudCmp [5] tools. Then
the system uses the proposed Least Connection per Cost (LCC) algorithm to
distribute job requests among public clouds. At last, the system scales up or
down automatically according to the price and performance of each cloud.

The remainder of this paper is organized as follows. In Sec. 2, we introduce the
system architecture and design objectives. Sec. 3 provides detailed description
of implementation principles and proposes LCC job scheduling algorithm. Sec.
4 introduces a series of simulation experiments to test our system functions and
performance. Sec. 5 provides an overview of related work. Finally, we conclude
our paper and provide future works in Sec. 6.

2 Design Objectives

This system is designed to help the hybrid cloud users provision cost-effective
services, especially for those who deploy multiple public clouds. Based on the
fact that different types of applications require different computing resources,
we classify all the applications into three representative types roughly:

* CPU-intensive application. In these applications, CPU resource is more eagerly
needed than other computing resource. For example video processing, scientific
computing and so on.

* Memory-intensive application. High IO throughput application such as large
Map-Reduce tasks which depend on sufficient memory for data shuffling.

* Disk-intensive application. NoSQL database (e.g., Cassandra, MongoDB) or
Distributed File System (e.g., HDFS) have high demand on storage.

Our design prefers processing workloads in the private cloud, and outsources
excessive workloads to the public clouds. Since prices and performance of public
clouds vary from cloud providers, we need to maintain high quality services as
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well as save cost. Before the load balance system start working, we select the
most suitable type of instances on each cloud in advance for the application.
Since Li et al. [5] compare VMs of multiple cloud providers so as to find out
which are the most suitable.
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Fig. 1. Overview of load balance system design for a hybrid cloud.

Fig. 1 shows an overview of load balance system design for hybrid cloud
applications. First, cloud users need to register their applications on the load
balancer with a unique application id and provide detailed information of re-
quested resource. Second, through administrating an application-cloud mapping
table, the system selectively adds a private cloud and public clouds for certain
applications.We deploy the application with cloud agent and generate a virtu-
al machine template on the most suitable instance type. Cloud agent starts to
collect and feedback the cloud load information to load balancer periodically.

The load balancer receives feedbacks and updates the priority of each cloud
based on our load balance algorithm. Here the cycle length depends on the
job requests arrival frequency. When the load balancer receives a batch of job
requests, it checks the priority of each cloud and dispatches the job requests to
the most cost-effective clouds.

Cost-Effective. Due to the unpredictable workloads, it’s hard for a private
cloud to predict an exact amount of hardware resources. As such, the private
cloud is not capable of processing such immense workloads, and the public cloud-
s can satisfy the requirements of high capacity and scalability. Considering the
variety of cloud providers, users want to add or remove a cloud for their appli-
cations freely. When users deploy their applications on multiple clouds, how to
choose the most cost-effective clouds becomes a critical problem.

In this paper, how much a job request costs is taken as the measurement of
cost-effectiveness (CE ratio for short). For example, if the price of a VM of a
cloud provider is P , and the VM can process N job requests per second, the CE
ratio equals P

N . The number N is hard to figure out through calculation, so we
use measurement tools of Cloudcmp to monitor it.
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Flexibility. With rapid development of cloud computing market, services
provisioned by public cloud providers change quite frequently. As such, cloud
users need to change their strategies of leveraging public clouds.

In order to achieve this goal, the design of the system is guided by the asyn-
chronous message-driven paradigm through RESTful design principle. We use
RESTful API to reduce the interdependency of tightly coupled interfaces, gen-
erally lowering the complexity of integration.

Specifically, the System allows cloud users to choose on which clouds to deploy
their applications, which leads to a many-to-many relationship.

Global Load Balance. Users’ applications are deployed on multiple clouds.
As such, we need to ensure global load balancing, so as to provision cost-effective
services and make the best use of cloud resources we’ve bought.

Since load information collected from other clouds is transmitted via the
Internet, the transmit latency must be low. We use short TCP connections for
immediate reinforcement. To reduce the number of messages, we abstract a cloud
as an unit to distribute workloads among clouds. For load balancing among VMs,
each cloud can address it. The low-level quality of service is guaranteed by the
service level agreement of cloud providers.

3 System Model

In this section we specifically describe how this system scheduling jobs and lever-
aging the auto scaling service for resource reallocation.

Job Scheduling & Resource Allocation Decoupling. Job scheduling and
resource allocation are the two main tasks of load balancing. Job scheduling
is highly required on bandwidth delay, while resource allocation is closely re-
lated to cost. Based on the characteristics of two different tasks, we discrete
the job scheduling module and resource management module from logic view.
Specifically, the job scheduling module only takes responsibility of receiving and
dispatching job requests while resource allocation module takes charge of moni-
toring the cloud resource usage and decides on when to scale up or down.

Cloud-level Load Balancing & VM-level Load Balancing Decoupling.
In our system, we adopt a two-level hierarchical load balancing architecture,
i.e., a cloud level and a VM level. On the cloud level, we take the cloud as an
unit of scheduling object as shown in Fig. 1. On the VM level, we use cloud
back-end load balancing services for job distribution among VMs. Almost all
the public cloud providers provision load balancing services within their clouds.
For example, Openstack [6] integrates LBaaS (Load-Balancing-as-a-Service) into
Neutron component. LBaaS allows cloud users to scale their applications, detect
unhealthy VM instances, balance loads across regions, route traffic to the closest
VM and so on.
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Centralized Management. Cloud agent is used to sent cloud information
back to the load balancer. We add a heartbeat mechanism to report the cloud
health status periodically.

3.1 Algorithm

Cloud Ability Measurement. Here we consider two sets of cloud resources,
i.e., PUB and PRI. Let PUB be the set of public clouds, which is denoted as {u1,
u2, ..., um}. Moreover, let PRI be the set of the private cloud, which is denoted
as {r1,r2,...,rn}. Furthermore, we set the resource parameters{cpu, mem, disk,
net}.

Mi(t) = min{λ
CPU
i (t)

dCPU
i

,
λMEM
i (t)

dMEM
i

,
λDISK
i (t)

dDISK
i

,
λNET
i (t)

dNET
i

} (1)

Algorithm 1 Least Connection-Cost Ratio Scheduling (LCC)

Denote (key,index) as cloud type and cloud ID
for each time slot t ∈ [0, 1, 2, ...] do
key = 0
for each cloud ri ∈ PRI do

if ri is not alarmed then
set key = 1
calculate cloud priority ηi

end if
end for
set index the private cloud ID with max priority
for each cloud ui ∈ PUB do

if ui is not alarmed then
calculate cloud priority ηi

end if
end for
set index the public cloud ID with max priority
for each job Ji(t) ∈ [J1(t), J2(t), ... do

if key Equals 0 then
Dispatch the job Ji(t) to cloud uindex

else
Dispatch the job Ji(t) to cloud rindex

end if
end for

end for

Equation (1) figures out the job request service rate of each VM in a cloud.

Job Scheduling We denote the current number of connections on each cloud
as Ci(t). And the price of selected instance on each cloud is denoted by Pi(t).
Furthermore, the value of priority of each cloud is denoted as ηi(t).
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ηi(t) =
Mi(t)− Ci(t)

Pi(t)
(2)

We sort the priority obtained based on Equation (2) of each cloud, and
record the priority list in configuration files. When a job request arrives, the
load balancer will select the cloud which has the maximum priority to server the
request. If the heartbeat packet from the preferred cloud does not arrive in time,
the preferred cloud will be the second one. The detailed algorithm is described
as Algorithm 1.

Cloud Scaling We set two thresholds for scaling up and down with a lower
bound and an upper bound, denoted as σl and σu, respectively.

σi(t) = max{
λCPU
i (t)−

∑N(t)

n=1
dCPU
in

λCPU
i (t)

,
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i (t)−
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∑N(t)

n=1
dDISK
in

λDISK
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} (3)

Algorithm 2 Cost-Effective Resource Allocation

set upscale = true, downscale = false
for each time slot t ∈ [0, 1, 2, ...] do

for λi ∈ PUB do
if σi(t) ≤ σu then
upscale = false

end if
if σi(t) ≤ σl then
downscale = true

end if
end for

end for
if upscale is true then

send scale− up direction to the prior cloud
end if
if downscale is true then

send scale− down direction to the worst cloud
end if

We use Equation (2) to calculate the priorities of public clouds. Here, we
use Equation (3) to get the resource usage of the current cloud in simulation
experiments. During each time slot, the load balancer checks whether each cloud
needs to adjust its scale. In real world, cloud provider provisions API to get the
states of cloud resources, which is much preciser. Algorithm 2 describes the
resource allocation process.

4 Experiment

In this section, we conducted a series of simulation experiments from differen-
t perspectives. The results demonstrate that our load balance mechanism for
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hybrid cloud application could reach cost-effective, meanwhile it also provides
information on the pros and cons.

4.1 Data Preparation

Requests: We first construct the realistic job requests according to the data
traces obtained from Google data center, which include the job arrive/leave time
and resource cost information. Then we simulate another three specific applica-
tion requests which have high demand on CPU, memory, and disk respectively.

Clouds: As the requests vary in Google trace, request should be sent to the
suitable cloud for handling. So using multiple public cloud is better than single
public cloud. As an instance’s startup need some delay, using multi-cloud can
somehow reduce the delay. We use three public clouds and two private clouds to
construct a hybrid cloud. The parameters of each instance on each cloud is set
according to the typical instance types of Amazon EC2 and Google Computing
Engine.

We list the public cloud parameters set in Table. 1. We also list the resource
demand of the three job requests used in experiment in Table. 2.

Table 1. Parameters of Public Clouds

Cloud ID CPU MEM DISK Price

Cloud 1 8 8 20 0.628

Cloud 2 2 8 20 0.375

Cloud 3 2 3 80 0.453

Table 2. Requirement of Resources

APP CPU MEM DISK

CPU APP 0.65 0.2 1.5

MEM APP 0.2 0.68 2.5

DISK APP 0.2 0.18 4.5

4.2 Experiment Results

Function Test In this experiment, we show functions that the load balancer
can reach. The system able to guarantee the private cloud resource use first,
keep private cloud at a higher resource utilization. The system will choose most
suitable cloud for out-sourcing according to the request type. Further more, it
is responsible to the price changes keeps global load balanced.
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Fig. 2 demonstrates respective CPU usage of the private and public clouds in
a hybrid cloud. As shown in Fig. 2, the average CPU usage of VMs in the private
cloud stays above 0.8 in the whole process except five short time periods. Such
a phenomenon indicates that our algorithm works based on our design concept.
As mentioned in Sec. 3, to maintain the least cost, we use the private cloud
as much as possible while outsource excessive workloads to the public cloud.
Hence, we need to ensure the average CPU usage of VMs in the private cloud
stays in a range stably. Meanwhile, the average usage of VMs in the public cloud
fluctuates wildly, which is led by bursty workloads. Although the workloads is
bursty, the CPU usage of private cloud is stable, which further demonstrates the
effectiveness of our algorithm.

Fig. 3 demonstrates the trends of the number of running VMs in three de-
ployed clouds under different types of workloads. In the first time period, the
workloads are CPU-intensive. The scale of Cloud 1 increases to the largest for
it is good at processing CPU-intensive workloads. Then, when the type of work-
loads switch to the memory-intensive type, the scale of Cloud 1 goes down while
the scale of Cloud 2 ramps up to the largest. Finally, the same trend can be
observed in the third time period. As a result, our algorithm is sensitive about
the changes in types of workloads and can adjust the scales of public clouds
based on it.

Fig. 4 shows the scales of public clouds when their prices change. In Fig. 4,
the scale of Cloud 2 increases after its price goes down. Meanwhile, when the
price of Cloud 1 increases, its scale decreases a little. The effects indicate that
our algorithm can adapt the price volatility and choose the cost-effective clouds
adaptively.

Performance Analysis For comparisons, we use random algorithm which is
most commonly used on load balance problems.

Fig. 5 plots the effects brought by different strategies of deploying the public
cloud. In Fig. 5, the average delay processed by single cloud is shorter than that
processed by multiple clouds. Furthermore, the cost of deploying single cloud is
less than that of deploying multiple clouds. Hence, by deploying multiple public
clouds, we can provision high quality services as well as saving cost. Meanwhile,
to show the effectiveness of LCC, we compare LCC to a random strategy. As
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plotted in Fig. 5, the delay of the random strategy is longer than LCC’s while
the cost is more than LCC’s. As a result, our algorithm works well in the hybrid
cloud environment.
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Fig. 6 shows different scales of public clouds in the hybrid cloud. As shown
in Fig. 3, the average number of VMs in Cloud 1 is the largest when the work-
loads are CPU-intensive. Then, the number in Cloud 2 is the largest when the
workloads are memory-intensive while the number in Cloud 3 is the largest when
the workloads are disk-intensive. Such phenomenon indicates that our algorithm
is aware of the types of workloads. Furthermore, our algorithm can adjust the
scales of deployed clouds based on different types of workloads and make the
best use of the public clouds.

Fig. 7 plots the effects brought by different numbers of public clouds. As
shown in Fig. 7, when the number of public clouds increases from 1 to 4, the val-
ues of latency and cost fall sharply. When deploying more clouds, our algorithm
can adjust the respective scales as well as distribute workloads to provision cost-
effective services. We have thought that the principle was ”the more choices, the
better”, adding cloud provider only bring less cost or not, no higher. Because
the load balancer can choose whether to use the cloud or not. However, when
the number of public clouds increases from 4 to 7, the latency decreases slight-
ly while the cost increases markedly. Since we need to maintain the least scale
of each public cloud, deploying more clouds does not contribute to cost-saving.
Furthermore, the capacity of hybrid cloud is too large to improve performance.

5 Related Work

With respect to studies on managing the performance overhead of VMs, part
of the work in [10] summarizes it under diverse scenarios of the IaaS cloud. Li
et al. in [5] focus on classifying and measuring the typical services which IaaS
public clouds provide. Complementary to [10] and [5], we deal with performance
issues of multiple public clouds in hybrid cloud scenarios. In terms of addressing
network performance, Yi et al. take a close look at the unique challenges in
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building a network highway for big data in [9]. Complementary to [9], we consider
network performance of web services when scheduling requests.

[8] gives out a hybrid cloud model which uses a workload factoring scheme
to separate base workload and flash crowd workload. Furthermore, [11] models
e-commerce web services and proposes an online algorithm to address the load
balancing problem under flash crowds in hybrid cloud scenarios. Inspired by [11]
yet different from it, we address the load balancing problem with considering
multiple public clouds.

6 Conclusion

This paper proposes a Least Cost per Connection (LCC) load balancing algo-
rithm for hybrid cloud applications, which can help provide cost-effective ser-
vices. We design a system prototype for simulation experiment. The results show
that our system can guarantee the private cloud usage as we expected and also
achieves the goal of high performance with low cost. Compared with single cloud
strategy, the cost and latency of our system decreases 30.2 and 10.1 percent re-
spectively. This system can be integrated into hybrid cloud manage platform
(CMP) like CloudForms, ManageIQ and so on. Other works we are doing now
are making this system a plug-in feature into ManageIQ [12].
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