
PostMan: Rapidly Mitigating Bursty Traffic by Offloading Packet Processing

Panpan Jin1, Jian Guo1, Yikai Xiao1, Rong Shi2, Yipei Niu1, Fangming Liu1∗, Chen Qian3, Yang Wang2

1National Engineering Research Center for Big Data Technology and System,
Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology, China
2The Ohio State University, USA

3University of California Santa Cruz, USA

Abstract
Unexpected bursty traffic due to certain sudden events, such

as news in the spotlight on a social network or discounted
items on sale, can cause severe load imbalance in backend ser-
vices. Migrating hot data—the standard approach to achieve
load balance—meets a challenge when handling such unex-
pected load imbalance, because migrating data will slow down
the server that is already under heavy pressure.

This paper proposes PostMan, an alternative approach
to rapidly mitigate load imbalance for services processing
small requests. Motivated by the observation that process-
ing large packets incurs far less CPU overhead than process-
ing small ones, PostMan deploys a number of middleboxes
called helpers to assemble small packets into large ones for
the heavily-loaded server. This approach essentially offloads
the overhead of packet processing from the heavily-loaded
server to others. To minimize the overhead, PostMan acti-
vates helpers on demand, only when bursty traffic is detected.
To tolerate helper failures, PostMan can migrate connections
across helpers and can ensure packet ordering despite such
migration. Our evaluation shows that, with the help of Post-
Man, a Memcached server can mitigate bursty traffic within
hundreds of milliseconds, while migrating data takes tens of
seconds and increases the latency during migration.

1 Introduction

Modern distributed systems usually scale by partitioning data
and assigning these partitions to different servers [4, 10, 11,
14,15,17,32,36,40,49]. In such an architecture, some servers
may experience a higher load than others, creating a classic
load imbalance problem [11, 16].

Many works have studied how to mitigate load imbalance
by better data partitioning and placement strategies [4, 10,
11, 14, 16, 17, 40], which work well for long-term and stable

∗The corresponding author is Fangming Liu (fmliu@hust.edu.cn).

load imbalance. For load imbalance caused by unexpected
bursty traffic, however, these approaches meet an additional
challenge: to adapt to such unexpected load imbalance, we
need to adjust the data partitioning or placement strategies
online by migrating hot data to less busy servers, but migrating
hot data will inevitably slow down the server hosting hot data—
this is the server we want to accelerate. This means to alleviate
load imbalance, these approaches will first exacerbate load
imbalance for a while, which is a risk that production systems
are often unwilling to afford. For example, Amazon Dynamo
runs data migration at the lowest priority, and finds that during
a busy shopping season, data migration can take almost a day
to complete [16]. Unfortunately, unexpected bursty traffic is
frequently reported in practice, for various reasons such as a
sudden event drawing public attention on a social network [9]
or a hot item on sale [18, 33, 38, 39].

This paper proposes PostMan, an alternative approach to
mitigate load imbalance for services that are processing small
packets, which usually incur a high overhead for packet pro-
cessing. Typical examples of such services include key-value
stores and metadata servers. For example, Facebook reported
that in its caching layer, most key sizes are under 40 bytes and
median value size is 135 bytes [5, 37]; metadata servers, such
as NameNode in HDFS [49], are usually processing packets
with a size of tens to a few hundred bytes.

The key idea of PostMan is motivated by the observation
that there is a significant gap between the overhead of process-
ing small and large packets, because the networking stack has
to pay a constant overhead for each packet, such as interrupt
handling and system call. For example, when processing 64B
packets on 10Gb Ethernet, Linux can achieve a throughput
of 2.4 Gbps with a CPU utilization of 800%. On the con-
trary, when processing 64KB packets, Linux can achieve a
throughput of 9.1Gbps with a CPU utilization of only 220%.
Newer networking stacks, such as mTCP [24] and IX [7], have
mitigated this problem, but first, the gap still exists, though
smaller, and second, a wide deployment of a new networking
stack requires a big effort, because the networking stack is a
critical component of the whole system, which may affect all

other components.
Motivated by this observation, PostMan incorporates a

number of middleboxes called helpers, which batch small
packets for the server experiencing bursty traffic (called
“helpee” in the rest of the paper), so that the helpee can enjoy
the low overhead of processing large packets. This approach
essentially offloads the constant overhead associated with
each small packet from the helpee to the helpers.

This approach brings several benefits: first, PostMan does
not require the time-consuming data migration. Instead, it
only requires the clients to re-connect to the helpers, which
can be completed within hundreds of milliseconds as shown
in our evaluation. Second, PostMan can incrementally deploy
new networking stacks on helpers and allow other servers to
still use traditional stacks. Third, PostMan can use multiple
helpers to accelerate one helpee, which means its capabil-
ity is not limited by the power of a single machine. Finally,
offloading batching opens up new opportunities for further
optimization: we observe that packets to the same destination
have significant redundancy in their packet headers (e.g., same
destination IP and port). By removing such redundancy, Post-
Man is able to achieve a considerable reduction in bandwidth
consumption at the helpee.

Of course, PostMan has its own limitation: if load imbal-
ance lasts long, PostMan will be more expensive than data
migration because incorporating helpers incurs additional
data transfer and extra server resource. Therefore, we expect
PostMan and data migration to be complementary to mitigate
load imbalance: for unexpected bursty traffic, we can activate
PostMan to accelerate the heavily-loaded server first; if such
burst continues to happen regularly, we can migrate data when
the machine is less busy; after data migration is completed,
we can disable PostMan to minimize cost. As a result, the
helpers would not be active for a long time. Moreover, since
PostMan only targets the servers experiencing bursty traffic,
we can use a few helpers for a large cluster to further reduce
cost.

The idea of batching small requests to improve perfor-
mance is certainly not novel. The key novelty of PostMan
lies in its observation that, for the purpose of mitigating un-
expected load imbalance, batching should be performed re-
motely and on demand: remote batching allows PostMan to
accelerate a heavily-loaded server with the help of resource
from other servers; on-demand batching allows PostMan to
minimize the overhead by only helping those servers experi-
encing bursty traffic. To realize these ideas, PostMan includes
three main components:

• We provide an efficient implementation of the helpers. By
utilizing state-of-the-art techniques like DPDK and effi-
ciently parallelizing work among multiple cores, a single
helper node can assemble and disassemble around 9.6 mil-
lion small packets per second. By removing redundancy in
headers, PostMan can reduce packet header size from 46

bytes to 7 bytes: for 64-byte packets, this means about 50%
higher bandwidth utilization at the helpee.

• To ensure packet ordering despite migrating connections
across helpee and helpers and despite helper failures, Post-
Man keeps helpers stateless by maintaining sufficient in-
formation at the clients and servers to detect out-of-order
packets and retransmit packets when necessary. While we
find many applications already implement similar function-
alities, we provide a library to those which do not.

• We present an adaptive batching mechanism to decide how
many packets to assemble. It can increase batch size for
higher throughput under heavy traffic and decrease batch
size for lower latency under light traffic.

Our evaluation on Memcached and Paxos shows that, with
the help of PostMan, the service can mitigate bursty traffic
within hundreds of milliseconds, while migrating data can
take tens of seconds. Further investigation shows that this is
because PostMan can improve the goodputs of Memcached
and Paxos by 3.3× and 2.8×, respectively.

2 Related work

Load balancing. Load balancing is a classic topic of dis-
tributed systems. Most existing systems use an adaptive
approach to achieve load balancing: they can monitor the
load of each machine and place new data on less busy
machines [4, 10, 11, 14, 16, 17, 20, 40]; some of them can
split, merge, and migrate existing data partitions online (e.g.,
Bigtable [11], RAMCloud [40] and ElMem [20]).

Despite the support from such mechanisms, how to mitigate
load balancing caused by unexpected bursty traffic is still a
challenge: since these mechanisms will put more pressure on
the machine that is already heavily loaded, the administrator
is facing a painful trade-off between the short-term loss and
the long-term gain of migrating hot data.

Batching small packets. A classic method to improve the
performance of processing small packets is to batch them to
amortize the constant overhead across multiple packets. For
example, TCP has the Nagle’s algorithm to batch small pack-
ets. Modern NICs often use Generic Receive Offload (GRO)
to re-segment the received packets. However, the power of
such per-connection batching mechanisms is limited by the
number of outstanding packets per client. In many cases, a
client may have to wait for replies before it can issue new
ones and thus the number of packets that can be batched is
limited.

Comet [21] batches the received data before batched stream
processing at the server side. KV-direct [29] first batches mul-
tiple KV operations at the client side to increase bandwidth
utilization, and then at the server side, it batches memory
accesses by clustering computation together.

64 bytes 64KB
10Gb Linux 2.4Gpbs 9.1Gbps
10Gb IX [8] 5.0Gbps 9Gbps

Table 1: Goodput of processing big and small packets. Good-
put excludes bandwidth used for headers.

A few systems incorporate a number of nodes to batch
packets for other nodes. For example, Facebook has built
mcrouter to batch packets for its Memcached service [37].
NetAgg aggregates traffic along network traffics for applica-
tions following a partition/aggregation pattern [34]. MPI has
a collective I/O mode to batch I/Os from multiple processes
before writing them to disks [35].

Compared to these systems, PostMan uses batching for
a different goal—mitigating unexpected load imbalance. To
achieve this goal, PostMan offloads the overhead of batching
from the heavily-loaded server to others and only performs
such offloading when a server is under heavy pressure. These
techniques allow PostMan to use extra resource to accelerate
a server experiencing bursty traffic and minimize the overhead
when there is no such bursty traffic.

Efficient network stack. There is a continuous effort to
develop more efficient network stacks for high-speed net-
works: mTCP [24] moves the TCP stack to the user space
to reduce system call overhead and further improves perfor-
mance by batching I/Os; DPDK [1] asks a network card to
transfer data to the user space directly and applies a series
of optimizations like CPU affinity, huge page, and polling
to get close to bare-metal speed; IX [8] and Arrakis [42]
design new operating systems to separate data transfer and ac-
cess control to achieve both high speed and good protection;
Netmap [45] improves networking performance by reduc-
ing memory allocation, system call, and data copy overhead;
many works [12, 22, 25, 26, 30, 31, 43, 47, 48, 50] exploit the
RDMA technique to improve networking performance.

Although these works have significantly improved the net-
work performance, the performance gap between small and
large packets persists (Table 1). Taking IX [8] as an example,
it can achieve almost 10Gbps bandwidth even with 64-byte
packets, which is significantly better than Linux. However,
first, it needs to consume a considerable amount of CPU
resource (see Section 6.2); second, there is still a gap be-
tween goodput (bandwidth used for payload) and throughput,
because packet headers consume a large portion of band-
width. Such per-packet overhead exists in RDMA systems as
well [27].

Furthermore, the deployment of new networking stacks
is usually a slow procedure, because networking service is
critical and production systems are unwilling to pay any risk.
On the other hand, PostMan allows administrators to incre-
mentally deploy such new techniques on a few servers to
accelerate a large number of legacy servers.

Helper

Postman helper

Node
Servers

packets

Helper

...

...

...

Clients

APP

APP

APP

APP

APP

Server experiencing

bursty traffic (helpee)

APP
Server with normal

load

PostMan library

Figure 1: Overview of PostMan.

Others. The architecture of PostMan is similar to existing
proxies (e.g., NGINX [44] and mcrouter [37]), which are also
deployed between clients and servers. The key difference
is that PostMan dynamically enables and disables helpers
according to the load of servers.

The design of PostMan may seem to be similar to that
of the split TCP approach [19, 41, 46], which also deploys
helper nodes in the network. However, their goals and internal
mechanisms are totally different: split TCP is designed to
reduce latency in a network with large round-trip delays, by
letting helper nodes send acks to the sender directly; PostMan,
on the other hand, is designed to improve the throughput of
transferring small packets by letting helper nodes batch small
packets. For the purpose of tolerating helper failures, Post-
Man’s helpers actually delay sending acks to the sender, until
the helpers receive acks from the helpee (see Section 4.2).

3 Overview of PostMan

In this paper, we propose PostMan, a distributed service to of-
fload the overhead of packet processing from a heavily-loaded
server (called helpee in the rest of this paper). Motivated by
the observation that processing large packets incurs far less
overhead than processing small packets, PostMan deploys
a number of helper nodes in the network to assemble small
packets for the helpee. By doing so, PostMan essentially of-
floads the constant overhead associated with each packet from
a helpee to the helpers. With the help of PostMan, a helpee
node only needs to process large packets.

Figure 1 shows the organization of PostMan. The core of
PostMan consists of: 1) a number of helper nodes that assem-
ble small packets for the helpees, and 2) a PostMan library that
provides the applications with the functionalities of packet
re-direction, assembly, and disassembly. Furthermore, Post-
Man library provides functions to detect out-of-order packets
and re-transmit packets when necessary. These functions al-
low PostMan to achieve fault tolerance and load balance by
migrating connections across helpers.

As shown in Figure 1, in a large scale distributed system,

PostMan will only activate helpers to accelerate servers expe-
riencing unexpectedly high load, which causes their latency
to be higher than their service level agreement (SLA). For
servers with normal load, their clients should communicate
with the servers directly. Accelerating these normal servers
with PostMan, though possible, is not cost effective. Essen-
tially PostMan offloads overhead instead of reducing over-
head: in fact, PostMan increases overall overhead because it
needs to perform additional work to assemble and disassem-
ble packets. Therefore, PostMan tries to keep such overhead
low by only helping nodes with trouble.

4 PostMan Design

PostMan is designed for the scenario that, suddenly, a large
number of clients are sending small requests to a few servers
(i.e., helpees). PostMan deploys helper nodes to assemble
the clients’ small packets to the helpee and disassemble the
helpee’s small packets to the clients, so that the helpee only
needs to process large packets. To differentiate these two
directions, we use “request” to refer to a packet from a client
to a server and “reply” to refer to a packet from a server to a
client.

In the rest of this section, we discuss how to assemble and
disassemble packets efficiently at helper nodes, what APIs
PostMan provides and how to apply them, and how to adap-
tively balance throughput and latency.

4.1 Assembling and disassembling packets
Format of assembled packet: For small packets, the size
of their headers (at least 20 bytes for IP and TCP header re-
spectively, 6 bytes for MAC header) is comparable to the size
of their payloads, and that is one major reason why network
throughput cannot reach bare-metal bandwidth, even with new
techniques like DPDK. However, when considering packets
to the same destination, their headers contain a significant
amount of redundancy: packet assembly at the helper nodes
can remove such redundancy and further improve throughput
at the helpee. For example, since packets to be assembled
have the same destination, PostMan only needs to maintain
one copy of destination IP and port in the assembled packet.
PostMan can shrink source IP as well for small to medium
clusters by maintaining a mapping from IP to a shorter identi-
fication number at each node (e.g., 2 bytes for clusters with
less than 64K machines). Moreover, since the connections
from the clients to the helper and the connections from the
helper to the helpee are separate, they perform congestion
control independently, which means the helper can simply
discard related information in the original packets.

As shown in Figure 2, a helper node can assemble packets
from multiple connections, and when doing so, the helper
discards their TCP/IP/MAC headers and only sends their pay-
loads, together with one TCP/IP/MAC header for all payloads,

m 7
...

PostMan helper node

Client 2 Server

Payload

7
TCP/IP/MAC header
PostMan Header

5

m

9 ...

Payload of assembled packet

59

Client n

Client 1

Figure 2: PostMan assembles packets from different clients
by using a short header for each payload.

Type Length (bytes) Description
ID code 1 Message type
Len 2 Message length
Sender 2* + 2 Src IP/port

Table 2: The format of PostMan header. (*: for a cluster with
less than 64K machines, the helper extracts the lower 16 bits
from a source IP and then hashes them into a 2-byte identifier)

so that the helpee does not need to pay the header overhead
for each packet. However, to ensure that the helpee can cor-
rectly disassemble packets, the helper node must encapsulate
necessary information for each payload, which is called a
“PostMan header”.

A PostMan header is a 3-tuple structure (Table 2): 1) an
identification code to identify the packet type, 2) a length
field to record the length of one payload, and 3) the source
IP and port of the payload to locate the sender. A packet can
have one of the following three types: 1) request, i.e., a packet
sent by a client, 2) reply, i.e., a packet sent by a server, and 3)
connect, i.e., a command to create a connection (see Section
4.2). As a result, compared to a TCP/IP/MAC header that
takes at least 46 bytes, a PostMan header only takes 7 bytes:
this is a significant saving when processing small packets.

Workflow of assembling and disassembling packets:
When assembling packets from the clients to the helpee, a
helper node fetches all pending packets in its network stack,
replaces their TCP/IP/MAC headers with corresponding Post-
Man headers, concatenates all of them, and adds its own
TCP/IP/MAC header. By doing so, both the PostMan headers
and the payloads of the original small packets become the
payload of the assembled packet.

On the opposite direction, when a helpee sends replies to
clients, it will first send the assembled reply to the helper
node, which will disassemble the replies and dispatch them
to the clients. The format of the assembled reply is similar to
that in Figure 2.

Each helper node can create multiple connections to the
helpee, so that one helpee can utilize multiple cores and
threads to receive packets concurrently.

4.2 PostMan library
A traditional networking library provides a number of APIs,
such as bind, connect, send, and recv to the application. Post-
Man library provides a few additional ones: pm_connect al-
lows a client to create a connection to a helper node; com-
pose and decompose assemble and disassemble packets as
described in Section 4.1; get_info allows the application to
retrieve connection information. A developer should use these
additional APIs together with traditional APIs to build the
application. Next, we show how these functions work and
how to modify an application to utilize these functions.
Establish connections. A server should bind to a port and
wait for new connections, like using a traditional network
library. Of course here a server may accept new connections
from the helper nodes. A client can use the traditional network
library when the latency is low and switch to PostMan when
the latency is high by calling pm_connect. pm_connect will
choose a helper (see Section 5.1) and connect to the helper.
Then it sends a special “connect” packet to the helper node.
This packet contains the destination IP and port of the helpee
and the source IP and port of the client. The helper node will
connect to the corresponding helpee, if there is no connection
yet, and forward this packet. At the same time the helper
creates a mapping from the client’s socket to the server’s
socket. When the server application reads data from a helper
connection, it should call decompose, which will identify the
special “connect” packet and notify the server application that
a new client tries to connect. Finally, the server library will
return a “success” packet to the client through the helper node,
telling the application pm_connect succeeds.
Transfer data. When PostMan is activated, a client should
send packets through the connection to the helper. The helper
node assembles multiple small packets and sends the assem-
bled packet to the server. When the server application reads
a packet, it calls decompose to disassemble the packet into
small packets and process them. On the opposite direction,
when a server sends replies, it should buffer multiple replies
and assemble them by calling compose. Then it can send the
assembled reply to the connection to the helper. The helper
node disassembles the replies and sends them to the corre-
sponding clients based on the PostMan headers. The clients
can read packets using a recv or read system call.
Ensure packet ordering. Applications often need to en-
sure packets are not lost, duplicated, or re-ordered. Since
PostMan uses TCP connections between the clients and the
helper nodes, and between the helper nodes and the helpees,
one can easily verify that these properties hold when there
is no migration of connections. However, PostMan may mi-
grate connections for several reasons: if a client is connecting
directly to a server and finds the latency is high, it will call
pm_connect to migrate its connection to a helper; when a
helper is heavily loaded, PostMan will instruct its clients to
migrate to other helpers; finally if a helper fails, its clients

must migrate to other helpers as well. As a result, PostMan
needs additional mechanisms to ensure packet ordering de-
spite such connection migration. For the first two cases, where
migration is executed gracefully, a simple solution is to ask
a client to wait for replies of all its pending requests before
migrating its connection. For the helper failure case, how-
ever, this problem becomes challenging, because a client is
uncertain about which packets are delivered.

In distributed systems, two approaches are widely used to
achieve fault tolerance: one is to replicate the nodes that can
be faulty, and the other is to re-direct requests to another node.
Replication can fully hide faults from upper layers, at the cost
of increased overhead. The re-direction approach has lower
overhead, but it requires the faulty node to be stateless, i.e., it
does not have any important state that will affect execution.

We use the re-direction approach because of its low over-
head. To ensure packet ordering even if the system loses all
information on the faulty helper node, PostMan needs to main-
tain sufficient information at the senders and receivers. Its
basic idea is similar to that of TCP: a sender should buffer a
packet until it gets acknowledged and re-send a packet if it
does not get acknowledgement in a given amount of time; a
receiver should check the sequence numbers in the packets
to ensure they are in order. Unlike TCP that implements this
mechanism in one connection, PostMan needs to implement
this mechanism across different connections because when a
helper fails, the client needs to re-connect to a new helper.

On one hand, we observe that many applications have al-
ready implemented such mechanism. The fundamental reason
they choose to do so instead of relying on TCP is that they
are designed to tolerate machine failures: in this case, a node
needs to connect to other nodes and face the same problem as
PostMan. For these systems, PostMan can utilize the applica-
tion’s mechanism directly.

On the other hand, for applications that do not have this
mechanism, PostMan provides a general solution. To ensure
packets will not be lost, PostMan library at senders1 will
buffer packets until it receives acks from receivers, like the
TCP protocol does. Since the underlying layer maintains sep-
arate TCP connections between the senders and the helper
nodes, and between the helper nodes and the receivers, the key
to avoid data loss is to coordinate the underlying ack mecha-
nisms: after receiving a packet from a sender, the helper node
should not send the ack to the sender until it has got ack from
the receiver. We modify the TCP implementation at the helper
nodes to realize this mechanism. Since Postman targets small
packets, delaying acks and sending them in burst should have
little impact on congestion control.

When a helper fails, a sender may not receive acks for its
outgoing packets, so it may decide to reconnect to another
helper and retransmit those packets through the new helper.

1Note that senders and receivers are different concepts compared to clients
and servers: when a server is receiving packets from a client, it is the receiver;
when a server is sending a reply to a client, it is the sender.

Lib client Helper 1 Helper 2 Lib server

Client Server
Maintaining Virtual Connection

pm_send

failure

timeout

pm_readRelease: <n

Figure 3: Maintaining a virtual connection by redirecting and
re-sending requests when a helper node fails.

In this case, since the receiver may have already received
these packets (acks may be lost due to helper failure), these
packets may be duplicated or re-ordered. To prevent such
abnormality, PostMan libraries at the sender and the receiver
maintain additional information to detect duplicate or out-of-
order packets.

To be specific, the library will keep track of how many bytes
are already sent and received on each connection; for each
buffered outgoing packet, the library will record its offset in
the stream. As shown in Figure 3, when a helper node fails, the
client library, which is the sender in this example, will connect
to another helper node and sends a “reconnect” message to
the server through the new helper node, which contains the
number of sent and received bytes at the client side. When
the server library receives this command, it will first stop
receiving packets from the old connection and then respond
with the number of sent and received bytes at the server side.
By exchanging the number of sent and received bytes and
comparing them to the offsets of buffered packets, both sides
can determine which packets should be re-transferred.
Further optimization. So far we assume an application
server needs to disassemble packets before processing them.
However, this may not be necessary for some applications.
A typical example is a server that needs to forward or broad-
cast packets (e.g., proxy server, leader replica in replication
protocols, etc). For such servers, since they do not care about
the content of payload, they can forward or broadcast the as-
sembled packets directly, instead of disassembling them first.
Note that when sending assembled packets, the application
should not use PostMan, since these packets are large.
Using PostMan library. To apply PostMan to existing ap-
plications, the developer needs to modify its code: at the
client side, the client should call pm_connect to switch to
PostMan when it observes a high latency and switch back to
traditional sockets when the latency drops back to normal;
at the server side, the server should call decompose when it

receives a packet from a helper (get_info can tell whether a
connection is from a client or from a helper) and should as-
semble a number of replies by calling compose when it sends
packets through helpers. If the application needs PostMan’s
help to ensure packet ordering, it should notify PostMan when
a packet is sent or received, so that PostMan can buffer and
release packets and update corresponding metadata.

It is possible to hide all the mechanisms mentioned above
in the library and provide the applications with an illusion
that they are using direct connections between clients and
servers. We have implemented a library to achieve such trans-
parency. However, we find it can incur up to 50% overhead
for additional operations like memory copy, synchronization,
context switch, etc. Considering the main goal of this work is
to improve the performance of the heavily-loaded server, we
decide to give up transparency for better performance.

4.3 Adaptive batching

Batching can affect system latency in two opposite ways: on
one hand, to assemble packets, a helper node must wait for a
certain amount of time to accumulate enough small packets,
which will increase the latency of the system. On the other
hand, according to queuing theory, when the load is close to or
higher than the system’s capacity, queuing delay will become
a dominant factor for latency. Since batching can improve a
system’s capacity, it can reduce queuing delay and thus can
reduce latency.

PostMan partially avoids such trade-off by only activating
helpers for heavily-loaded servers. In addition, PostMan in-
corporates an adaptive batching algorithm to balance latency
and throughput when helpers are enabled. Like many systems
using batching, PostMan defines a maximum batch interval
(T) and a preferred batch size (S): if the helper has waited for
T (condition 1) or if its assembled packet has reached size S
(condition 2), the helper will send the assembled packet to the
helpee. Then the question turns to how to set T and S: large
T and S lead to unnecessary waiting when traffic load is light;
small T and S reduce the chance of assembling packets when
traffic load is heavy.

To address this problem, PostMan uses an adaptive batch
size and interval to increase throughput under heavy loads
and decrease latency under light loads, as shown in Algorithm
1. PostMan records the batch size (s) and waiting time (t)
of the last batch: if s is significantly different from S or t
is significantly different from t, PostMan updates S and T
accordingly. Furthermore, it sets a lower bound of S and T to
ensure efficiency. Note that although T is the maximum batch
interval, the actual interval t can be much larger than T when
the helper does not receive any packets for a long time; s can
be much larger than S as well when the helper receives many
packets at the same time.

This algorithm has a few parameters: we set the lower
bound of S to be 1500 because that is the MTU size; the lower

Algorithm 1 Adaptive batching algorithm
Input: the size (s) and waiting time (t) of last batch

1: procedure Update S and T
2: Sl ← 0.75S
3: Su← 1.25S
4: if (s < Sl ∨ s > Su)∧ (s≥ 1500) then
5: S← s
6: end if
7: Tl ← 0.5T
8: Tu← 1.5T
9: if (t < Tl ∨ t > Tu)∧ (t ≥ 10µs) then

10: T ← t
11: end if
12: end procedure

bound of T should be set according to the SLA requirement;
we set other parameters based on empirical experiments.

5 Implementation

In this section, we present how to achieve efficiency and
scalability for PostMan.

5.1 Efficient helper
Fast I/O and user-level stack: Each helper node needs
to assemble requests from the clients, and disassemble the
replies from the servers. To efficiently process the small
packets on the helper nodes, we implement PostMan upon
DPDK [1], which is a set of libraries and drivers for fast packet
processing. DPDK minimizes the overhead of packet process-
ing by transferring packets from NICs directly to user space
programs and thus can achieve a throughput of hundreds of
millions packets per second. Upon DPDK, we use mTCP [23]
to handle TCP protocol and connections. DPDK provides a
poll mode I/O model, which can transfer a batch of packets
in one I/O operation. This I/O model not only avoids the
overhead caused by frequent interrupts in per-packet based
processing in Linux, but also naturally fits the assembling
requirements of our helper nodes: a helper can simply add all
the payload data from these packets to the assembling buffer,
instead of performing the read operation several times.

In-stack processing: Since the assembling logic only in-
volves simple operations for request/response headers, Post-
Man implements these operations in the network layer to
accelerate the identification and pre-processing of the origi-
nal packets. PostMan uses direct data exchange between the
server and the client streams so as to avoid redundant memory
copy and improve the performance of fragmented data opera-
tion. By implementing everything in the network stack, Post-
Man eliminates the interaction and context switching between
the applications and the stack to further improve assembling

efficiency. All necessary assembling and disassembling oper-
ations are queued in the stack, so that PostMan can perform
them after finishing processing the incoming packet in the
TCP protocol. Furthermore, PostMan only keeps the neces-
sary procedures for receiving and sending packets in a TCP
stream. Other operations, like the ICMP protocol, are aban-
doned, either because they have nothing to do with packet
assembly, or they should be performed in the helpee’s stack.
Independent per-core context: PostMan leverages per-
core thread (affiliated to a hardware thread) and independent
per-core context to avoid synchronization among different
assembling threads. On each helper node, we enable the Re-
ceive Side Scaling (RSS) [3] function of NIC—this is widely
supported by today’s NICs—to hash flows into different phys-
ical queues in hardware, where each queue is assigned to a
dedicated CPU thread. PostMan does not share any global
information, hence the connection can be locally processed on
each core. PostMan sets up at least one queue for each thread,
such that the flows in each RSS group can be processed inde-
pendently without exchanging any information between CPU
cores. Consequently, PostMan can scale well on today’s multi-
core system. Note that RSS will reduce a helper’s chance to
batch packets, but since PostMan is enabled only when the
server is under high load, there are still plenty of chances
for a helper to batch packets as shown in our evaluation. For
each thread, PostMan uses hugepages to store raw packet data,
similar as many DPDK based applications, so as to reduce
the number of TLB misses; PostMan uses hardware-based
CRC instruction for flow hashing to accelerate the assembling
process.

5.2 Scalability and load balancing
As presented in the previous section, PostMan is designed
for hardware thread and RSS built-in NIC. Hence, PostMan
scales well with the number of cores.

For helper nodes, their stateless nature, which allows con-
nections to be migrated freely across helpers, significantly
simplifies scaling and load balancing: when a client connects
to helpers, it picks up one with a low load; whenever some
helper nodes are overloaded, they can simply disconnect some
clients and those clients will automatically re-connect to other
helper nodes. To achieve this, PostMan uses a standard load-
balancing technique: each helper monitors its own CPU and
network utilization; when a client establishes a connection,
either for a new connection or for re-connecting, it randomly
chooses a number of helpers; each helper will reply with its
resource utilization, so that the client can choose the helper
with the lowest utilization; when a helper finds its resource
utilization is too high, it disconnects existing connections, so
that the corresponding clients can connect to other helpers.

PostMan has no inherent scalability bottleneck: since a
client can connect to any helper, PostMan does not need a
centralized master node to map clients to helpers.

5.3 When to enable and disable helpers?

PostMan provides a mechanism to enable and disable helpers
on demand, but in practice, we still need to answer the policy
question about when to enable and disable helpers. In prin-
ciple, both the clients and the servers can make the decision
and we observe the following trade-offs:

A client can monitor its perceived latency to the server and
make decisions accordingly: this approach brings minimal
overhead to the server side, but since a client cannot gain the
overall load statistics of the server, it may not be able to make
the best decisions in certain cases. On the other hand, a server
certainly has more information to make a better decision, but
to execute the decision, the server must pay the overhead of
notifying corresponding clients and helpers, which could be
problematic if the server is already under heavy load.

Therefore, the current implementation of PostMan uses a
hybrid approach: a client will decide to enable helpers (i.e.,
the client disconnects from the server and connects to a helper)
if it detects its perceived latency is higher than SLA—this
could minimize the overhead at the server side when the
server is busy; a server will decide to disable helpers when
its throughput becomes low—the overhead is fine in this case
since the server is not too busy.

6 Evaluation

The goal of PostMan is to quickly mitigate the bursty traffic
directed to one or a few servers. To assess whether PostMan
achieves this goal, we evaluate the performance of PostMan
using various applications and workloads. In particular, our
evaluation answers the following questions:

• How well can PostMan help a service reduce the load
caused by bursty traffic?

• How is PostMan’s capability affected by packet size?

• How much resource does PostMan need to achieve such
benefit?

• How does the system perform when there are helper fail-
ures?

To answer the first question, we run benchmarks on Mem-
cached and Paxos, and emulate the case of bursty traffic by
drastically increasing the load during the middle of the ex-
periment; we enable PostMan after such burst to measure 1)
whether it can reduce the latency of the target service and 2)
how long it takes to enable PostMan. We compare the results
of PostMan to those of the data migration approach.

To answer the following three questions, we use a ping-
pong microbenchmark to measure the performance of Post-
Man under different parameters.

Memcached. Memcached is a key-value based memory ob-
ject caching system [2]. It is used widely in the data centers
to cache data to speed up the lookups of frequently accessed
data. As reported in [5], Memcached is often used to store
small but hot data. We have modified 454 lines of code in
Memcached 1.4.32 to apply PostMan. The benchmark gen-
erates GET/SET commands with a fixed key size (32 bytes)
and different value sizes.

Paxos. Paxos is an asynchronous replication protocol to
achieve consensus in a network of unreliable processors [28].
Paxos needs 2 f +1 replicas to tolerate f machine crashes and
asynchronous events (e.g inaccurate timeout caused by net-
work partitions). A number of systems, such as Megastore [6],
Windows Azure [10] and Spanner [14], are using Paxos for
fault tolerance and since they use many Paxos groups, one for
each data partition, it is possible that a few of them experience
bursty traffic.

In Paxos, one replica is elected as leader, and it needs to
broadcast the received requests to other non-leader replicas.
It is a typical example of applications that do not care about
the contents of packets. Therefore, the leader can read the
assembled packets from PostMan and broadcast the assem-
bled packets directly. After the non-leader replicas receive the
assembled packets, they will disassemble them. Such mecha-
nism can avoid the redundant disassembling and assembling
operations at the leader replica, which is the bottleneck in
the system. To exploit such opportunities, we implement our
own version of Paxos using PostMan and compare it to a
vanilla version that reads individual packets from the clients,
assembles them, and then broadcasts the assembled packets.
For simplicity, we only implement the Paxos protocol in the
failure-free case, which is enough to evaluate the performance
benefit of PostMan.

Ping-pong benchmark. This benchmark [8] can test net-
work performance with configurable packet sizes. To avoid the
inaccuracy caused by TCP merging packets, this benchmark
asks each client to perform a ping-pong like communication
with the server: the client sends a packet to the server and
then waits for the server to send the packet back. By doing so,
since a client has only one outstanding packet, TCP has no
chance to merge packets.

Experiment Setup. We run all experiments on Cloud-
Lab [13] with 15 machines. Each machine is equipped with
an Intel Xeon E5-2660 v3 @ 2.60GHz CPU, with 10 phys-
ical cores and hyper-threading, and an Intel 82599ES 10-
Gigabit NIC. These severs run Ubuntu 16.0.2 LTS with Linux
4.8.0 kernel, and use DPDK 16.07.2 for the helper nodes. For
DPDK Poll Mode Driver, we set the batch size to 64, which
is the maximum number of packets received/transmitted in
each iteration. For Paxos and Ping-pong experiments, we use
IX [8], a state-of-the-art network stack built upon DPDK, at
the client side, so that we can stress-test the server with a
limited number of client nodes. We also add 17 LoC to count

Times(s)

0 2 4 6 8 10 12 14 16 18 20 22 24 26

L
a
te

n
c
y
(µ

 s
)

0

100

200

300

400

500

600

700

800

Increase load

PostMan finishes

re-connecting

Data migration

starts

PostMan starts

re-connecting

Data migration

finishes

Figure 4: Mitigating bursty traffic in Memcached (PostMan
enables two helpers).

the RX/TX bytes and packets in the data plane of IX, whose
impact on the performance is negligible in our experiments.
For Memcached experiments, since the Linux stack is suffi-
cient to saturate the server, we do not switch to IX. By default,
the application server of our benchmarks runs on 16 cores
(8 real cores with hyperthreading). Note that in all experi-
ments, when enabling PostMan, our reported goodput does
not include the PostMan header and the TCP/IP/MAC header
added by the helper nodes, which allows a fair comparison
with the goodput without PostMan. When using PostMan,
a client enables helpers if its observed 99 percentile latency
(p99) is higher than 500 µs [7].

6.1 Effectiveness of PostMan
To measure the effectiveness of PostMan, we emulate the case
of bursty traffic on both Memcached and Paxos.
Memcached. We measure p99 latency of Memcached using
a read workload with 32B keys and 64B values. As shown
in Figure 4, we first use a light load, which incurs a latency
of 200 µs, till time 5. Then we increase the load drastically,
which increases the latency to more than 500 µs. At about time
9, we enable PostMan, which asks clients to re-connect to
helpers. Such re-connection involves 660 client connections
and finishes within 550 ms. Afterwards, the latency is reduced
to around 300 µs.

As a comparison, we emulate the data migration approach
by assuming 50% of the clients are accessing 10% of the
data (i.e., 6.4GB) in the Memcached server. Therefore, we
start a thread in the Memcached server to copy the data to an-
other server at time 9. Normally such a thread needs to access
the internal data structure of Memcached, which may incur
additional CPU overhead and may contend with the client’s
requests. Our emulation avoids such overhead by letting the
migration thread copy dummy data to another server, which
is in favor of the data migration approach. After data copy
is complete, we remove half of the clients since they should

Times(s)

0 2 4 6 8 10 12 14 16 18 20 22

L
a
te

n
c
y
(µ

 s
)

0

100

200

300

400

500

600

Increase load

Data migration starts

PostMan starts

re-connecting

PostMan finishes re-connecting

Data migration

finishes

Figure 5: Mitigating bursty traffic in Paxos (PostMan enables
two helpers).

be re-directed to another server. As one can see, the data mi-
gration takes about 13 seconds and during this procedure, the
latency of the service further increases, because the migra-
tion traffic and the client’s traffic compete for resource. One
can of course limit the rate of migrating data to reduce such
interference, but that will further increase the length of data
migration.
Paxos. We run a similar set of experiments on Paxos. We
measure the p99 latency of Paxos using a workload with 64B
requests (Paxos does not execute the request, so the content of
the request does not matter). As shown in Figure 5, we first use
a light load, which incurs a latency of 200 µs, till time 5. Then
we increase the load, which increases the latency to about 500
µs. At about time 9, we enable PostMan, which asks clients
to re-connect to helpers. Such re-connection involves 960
client connections and finishes within 750 ms. Afterwards,
the latency is reduced to around 220 µs.

Similarly, we emulate the data migration approach by as-
suming 50% of the clients are accessing 10% of the data.
Therefore, we start a thread in the non-leader server to copy
the data to another server at time 9. Since the leader has the
highest overhead in Paxos, copying data from a non-leader
server should incur less interference on the clients’ requests.
After data copy is complete, we remove half of the clients
since they should be re-directed to another server. As one
can see, the data migration takes about 8 seconds. During
this procedure, unlike the Memcached experiments, data mi-
gration has little impact on the clients’ requests, because it
is performed from a non-leader server. Note that after miti-
gating bursty traffic, the performance of the two systems is
different because they have different workloads: with Post-
Man, the server is processing full load with big packets; after
data migration, the server is processing half load with small
packets. Which one has better performance depends on the
actual workload: in Figure 5 the system with PostMan has
lower latency while in Figure 4 the system with PostMan has
slightly higher latency.

0 1000 2000 3000 4000 5000 6000 7000

Messages/s (10
3
)

0

100

200

300

400

500

600

L
a

te
n

c
y
 (

 s
)

set

set+PostMan

get+PostMan

get

Figure 6: The latency with different load for Memcached and
Memcached + PostMan (64-byte payloads; PostMan enables
up to five helper nodes).

Messages/s (10
3
)

0 1000 2000 3000 4000 5000 6000

L
a
te

n
c
y
 (
µ

 s
)

0

50

100

150

200

250

300

350

400

Paxos Paxos+PostMan

Figure 7: The latency with different load for Paxos and Paxos
+ PostMan (64-byte payloads; PostMan enables up to six
helper nodes).

Both the Memcached and the Paxos experiments have con-
firmed the effectiveness of PostMan: for services processing
small packets, PostMan can quickly mitigate the long latency
caused by unexpected bursty traffic, because it can offload the
overhead of packet processing to helpers; data migration, on
the other hand, takes much longer to achieve the same goal,
and may further increase the latency during data migration
when data migration competes for resource with processing
clients’ requests.
Capabilities of PostMan. To understand in what circum-
stances can PostMan help to mitigate bursty traffic, we mea-
sure how Memcached’s and Paxos’ tail latency grow with the
load and how PostMan changes such trend.

As shown in Figure 6 and Figure 7, both Memcached get
experiment and Paxos experiment show the same trend: when
the load is low (i.e., lower than 2000K messages/s in Mem-
cached and 500K messages/s in Paxos), using PostMan will

Size(B)

0 300 600 900 1200 1500

M
e
s
s
a
g
e
s
/s

10
5

10
6

10
7

10
8

Linux + PM with 8 cores

Linux with 8 cores

Linux + PM with 1 core

Linux with 1 core

size = 400B size = 1460B

Figure 8: The throughput with different payload sizes for
Linux and Linux + PostMan (PostMan enables up to six helper
nodes).

Size(B)

0 100 200 300 400 500 600 700 800 900 1000

M
e
s
s
a
g
e
s
/s

10
5

10
6

10
7

10
8

IX + PM with 8 cores

IX with 8 cores

IX + PM with 1 core

IX with 1 core

size = 260B size = 920B

Figure 9: The throughput with different payload sizes for IX
and IX + PostMan (PostMan enables up to six helper nodes).

actually introduce extra latency, because of the additional
processing at the helper; when the load grows, the latency of
the original systems will grow as well due to queuing delay
and when these systems are close to saturation, their latency
jumps, which is what happens when the service experiences
bursty traffic. PostMan can offload their overhead of packet
processing to helpers and thus can improve their maximum
throughput, which reduces their queuing delay in a range of
loads: for Memcached get experiments, PostMan can reduce
the latency if the load is between 2000K and 6000K mes-
sages/s; for Paxos, PostMan can reduce its latency if the load
is between 500K and 5000K messages/s. Memcached set ex-
periments do not benefit from PostMan, because as shown
in our profiling, its bottleneck is lock contention, which has
nothing to do with packet processing. This set of experiments
show that PostMan is effective for a wide range of loads, but
it does have its limits: that’s why it is complementary to data
migration, which does not have such limits but requires a
longer time to be effective.

Number of helpers

0 1 2 3 4 5 6 7 8

M
e
s
s
a
g
e
s
/s

 (
1
0

6
)

0

4

8

12

16

20

24

28

64 Bytes

32 Bytes

Bandwidth saturated 8.8Gbps

Bandwidth saturated 9.0Gbps

Figure 10: The performance scale linearly when increasing
the number of helpers nodes.

0 2 4 6 8 10 12
Time (10

-1
s)

0

0.5

1.0

1.5

2.0

2.5

M
e

s
s
a

g
e

s
/s

 (
1

0
6
)

Response timeout

Re-connection finishedKill helper service

Figure 11: The performance when PostMan recovers the con-
nections by mapping them to another active helper.

6.2 Effects of packet size

The capability of PostMan is affected by the packet size be-
cause PostMan’s key idea of assembling packets naturally
works well with smaller packets. To quantitatively under-
stand how PostMan’s capability is affected by this factor, we
use the ping-pong microbenchmark to measure the through-
put of PostMan, since as shown in Section 6.1, the maximal
throughput of PostMan determines the range of loads in which
PostMan might be helpful. We compare the throughput of
PostMan to those of Linux and IX [7]. Since we fail to run an
IX server with more than nine cores, we reduce the number
of cores to eight in this set of experiments. Since IX shows it
can outperform mTCP [24], another popular network stack,
we do not further compare PostMan with mTCP.

Figure 8 shows the throughput of Linux under different
packet sizes, with and without PostMan. As shown in this
figure, when the server can utilize 8 cores for packet process-
ing, PostMan can improve throughput when the payload size
is less than 400 bytes. However, for CPU-intensive applica-
tions, this may not be a fair comparison because PostMan

can reduce CPU utilization as well as improving throughput.
Therefore, we also show the comparison when the server can
utilize only one core for packet processing. In this case, Post-
Man can improve throughput when payload size is smaller
than 1460 bytes.

Figure 9 shows the throughput of IX under different packet
sizes, with and without PostMan. It shows a similar trend as
the Linux experiment, though the turning points are smaller,
260B and 920B respectively. The benefit of PostMan still
exists although becomes smaller than that in the Linux ex-
periment. This is because IX, with an optimized networking
stack, pays less overhead per packet compared to Linux.

Comparing Figure 8 and Figure 9, one can see that
Linux+Postman can even outperform IX when the packet
size is small, despite the fact that the former approach does
not require installing a new OS on all servers.

6.3 Performance of helper nodes

So far we have measured the performance gain at the server
side. A natural question is how much resource we need to
pay at the helper side to achieve such performance gain. To
answer this question, we measure how much throughput a
single helper can provide and whether PostMan scales with
the number of helpers.

In this set of experiment, we use IX as the server side to
ensure the server will not become the bottleneck. As Fig-
ure 10 shows, a single helper node can process about 9.6
million small messages (assembling 4.8 million requests and
disassembling 4.8 million responses) per second. When in-
creasing the number of helper nodes, the overall throughput
of PostMan scales almost linearly, till the helpee’s bandwidth
is saturated.

Such results have demonstrated that PostMan does need
a number of helper nodes to improve the throughput at the
server side: this is as expected because PostMan offloads
overhead instead of reducing overhead. Therefore, we expect
a small-scale deployment of PostMan to help a few heavily
loaded servers.

6.4 Fault tolerance

To test whether PostMan can tolerate failures of helper nodes,
we set up a simple scenario, in which two active helper nodes
are connected to the server. A Linux client running on Post-
Man client library is performing request-reply communication
to the server, with 10 threads and 1000 connections in total.
To examine the failure recovery of helper nodes, we first let all
clients connect to one helper, record the throughput (measured
every 100ms) of the clients and manually kill the connected
helper node. As shown in Figure 11, the library waits until
a timeout on receiving the reply message, and then recon-
nects to the other helper node. The re-connection takes about

0 100 200 300 400 500 600 700 800 900

Batch ID

0

500

1000

1500

0

1000

2000

3000

4000

5000

6000

B
a

tc
h

 S
iz

e
 (

B
)

Batch Size

Batch Interval

Decrease loadIncrease load

Figure 12: Adaptively changing batch size and interval.

0.4s to recover all 1000 connections. After that, the message
exchange reaches the previous rate.

Note that PostMan’s correctness does not rely on the cor-
rectness of timeout: even if the timeout is inaccurate (i.e., a
timeout is triggered when the previous helper node is still
alive), PostMan can still guarantee all its properties because
clients and servers will close the old connection and exchange
necessary information when establishing a new connection
(Section 4.2). This means in practice, the developers can use
a shorter timeout to improve availability. In this experiment,
we simply use an arbitrary 1-second timeout to show that
PostMan can function correctly despite failures.

6.5 Adaptive batching

To test the effectiveness of our adaptive batching algorithm,
we change the load of our system and see how PostMan re-
acts. As shown in Figure 12, with the load increasing, the
batch interval decreases, implying that the helper nodes batch
packets more frequently. Although the size variation seems
noisy, the batch sizes are mostly larger than those with low
load. When the load decreases, the helper nodes can reduce
the batch size and increase the batch interval. As a result, we
can conclude that the batch size and batch interval are well
adapted to fluctuating load.

7 Conclusion

In this paper, we present PostMan, a distributed service to
mitigate load imbalance caused by bursty traffic, by offloading
the overhead of packet processing from heavily-loaded servers
and reducing data redundancy in packet headers. By batching
small packets remotely and on demand, PostMan can utilize
multiple nodes to help a heavily-loaded server when bursty
traffic occurs and can minimize the overhead when there is no
such bursty traffic. Experiments with Memcached and Paxos
show that, compared to data migration, PostMan can quickly
mitigate the extra latency caused by bursty traffic.

8 Acknowledgment

We thank our shepherd Boris Grot and other anonymous re-
viewers for their insightful comments. This work was sup-
ported in part by the NSFC under Grant 61761136014 (and
392046569 of NSFC-DFG) and 61722206 and 61520106005,
in part by National Key Research & Development (R&D)
Plan under grant 2017YFB1001703, in part by the Fundamen-
tal Research Funds for the Central Universities under Grant
2017KFKJXX009 and 3004210116, in part by the National
Program for Support of Top-notch Young Professionals in Na-
tional Program for Special Support of Eminent Professionals,
and in part by the NSF grant CNS-1566403.

References

[1] Dpdk (data plane development kit). https://www.
dpdk.org/.

[2] Memcached. http://memcached.org.

[3] Receive side scaling on intel network adapters.
https://www.intel.com/content/www/us/en/
support/network-and-i-o/ethernet-products/
000006703.html.

[4] Apache HBASE. http://hbase.apache.org/.

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In Proceedings of SIGMETRICS,
2012.

[6] Jason Baker, Chris Bond, James C. Corbett, JJ Fur-
man, Andrey Khorlin, James Larson, Jean-Michel Leon,
Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
Megastore: Providing Scalable, Highly Available Stor-
age for Interactive Services. In Proceedings of CIDR,
2011.

[7] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
Ix: A protected dataplane operating system for high
throughput and low latency. In Proceedings of OSDI,
2014.

[8] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
Ix: A protected dataplane operating system for high
throughput and low latency. In Proceedings of OSDI,
2014.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony
Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat

https://www.dpdk.org/
https://www.dpdk.org/
http://memcached.org
https://www.intel.com/content/www/us/en/support/network-and-i-o/ethernet-products/000006703.html
https://www.intel.com/content/www/us/en/support/network-and-i-o/ethernet-products/000006703.html
https://www.intel.com/content/www/us/en/support/network-and-i-o/ethernet-products/000006703.html
http://hbase.apache.org/

Venkataramani. Tao: Facebook’s distributed data store
for the social graph. In Proceedings of ATC, 2013.

[10] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakan-
tan, Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shash-
wat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew
Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-
basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad
Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand,
Anitha Adusumilli, Marvin McNett, Sriram Sankaran,
Kavitha Manivannan, and Leonidas Rigas. Windows
Azure Storage: a highly available cloud storage service
with strong consistency. In Proceedings of SOSP, 2011.

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. In
Proceedings of OSDI, 2006.

[12] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using rdma and htm. In Proceedings of EuroSys, 2016.

[13] CloudLab. https://cloudlab.us.

[14] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s Globally-Distributed Database. In
Proceedings of OSDI, 2012.

[15] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Sim-
plified data processing on large clusters. In Proceedings
of OSDI, 2004.

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-value Store. In Proceedings of SOSP, 2007.

[17] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The google file system. In Proceedings of SOSP,
2003.

[18] Glastonbury ticket website crashes. https:
//www.theguardian.com/music/2016/oct/09/
glastonbury-ticket-website-crashes, 2016.

[19] Chamara Gunaratne, Ken Christensen, and Bruce Nord-
man. Managing energy consumption costs in desktop
pcs and lan switches with proxying, split tcp connec-
tions, and scaling of link speed. International Journal
of Network Management, 15(5):297–310, 2005.

[20] Ubaid Ullah Hafeez, Muhammad Wajahat, and Anshul
Gandhi. Elmem: Towards an elastic memcached system.
In Proceedings of ICDCS, 2018.

[21] Bingsheng He, Mao Yang, Zhenyu Guo, Rishan Chen,
Bing Su, Wei Lin, and Lidong Zhou. Comet: batched
stream processing for data intensive distributed com-
puting. In Proceedings of ACM symposium on Cloud
computing, 2010.

[22] N. Islam, W. Rahman, X. Lu, and D. Panda. High Per-
formance Design for HDFS with Byte-Addressability
of NVM and RDMA. In Proceedings of ICS, 2016.

[23] Eun Young Jeong, Shinae Woo, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mtcp: A highly scalable user-level tcp
stack for multicore systems. In Proceedings of NSDI,
2014.

[24] EunYoung Jeong, Shinae Wood, Muhammad Jamshed,
Haewon Jeong, Sunghwan Ihm, Dongsu Han, and Ky-
oungSoo Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In Proceedings of
NSDI, 2014.

[25] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design guidelines for high performance rdma systems.
In Proceedings of ATC, 2016.

[26] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In Proceedings
of OSDI, 2016.

[27] Anuj Kalia Michael Kaminsky and David G Andersen.
Design guidelines for high performance rdma systems.
In Proceedings of ATC, 2016.

[28] Leslie Lamport. Paxos Made Simple. ACM SIGACT
News (Distributed Computing Column), 32(4):51–58,
December 2001.

[29] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: high-performance in-memory
key-value store with programmable nic. In Proceedings
of SOSP, 2017.

[30] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda.
High performance rdma-based mpi implementation over
infiniband. Int. J. Parallel Program., 32(3):167–198,
June 2004.

https://cloudlab.us
https://www.theguardian.com/music/2016/oct/09/glastonbury-ticket-website-crashes
https://www.theguardian.com/music/2016/oct/09/glastonbury-ticket-website-crashes
https://www.theguardian.com/music/2016/oct/09/glastonbury-ticket-website-crashes

[31] X. Lu, D. Shankar, S. Gugnani, and D. Panda. High-
Performance Design of Apache Spark with RDMA and
Its Benefits on Various Workloads. In Proceedings of
IEEE International Conference on Big Data, 2016.

[32] John MacCormick, Nick Murphy, Marc Najork, Chan-
dramohan A. Thekkath, and Lidong Zhou. Boxwood:
Abstractions as the Foundation for Storage Infrastruc-
ture. In Proceedings of OSDI, 2004.

[33] Macy’s Web Site Buckles Under Heavy Traffic on
Black Friday. http://fortune.com/2016/11/25/
macys-black-traffic/, 2016.

[34] Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa,
Matteo Migliavacca, Peter Pietzuch, and Alexander L.
Wolf. NetAgg: Using Middleboxes for Application-
specific On-path Aggregation in Data Centres. In Pro-
ceedings of CoNEXT, 2014.

[35] Introduction to Parallel I/O. https://www.olcf.ornl.
gov/wp-content/uploads/2011/10/Fall_IO.pdf.

[36] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan,
Owen Hofmann, Jon Howell, and Yutaka Suzue. Flat
Datacenter Storage. In Proceedings of OSDI, 2012.

[37] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In Proceedings of NSDI, 2013.

[38] Yipei Niu, Fangming Liu, Xincai Fei, and Bo Li. Han-
dling flash deals with soft guarantee in hybrid cloud. In
Proceedings of INFOCOM, 2017.

[39] Yipei Niu, Bin Luo, Fangming Liu, Jiangchuan Liu, and
Bo Li. When hybrid cloud meets flash crowd: Towards
cost-effective service provisioning. In Proceedings of
INFOCOM, 2015.

[40] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman,
John Ousterhout, and Mendel Rosenblum. Fast Crash
Recovery in RAMCloud. In Proceedings of SOSP, 2011.

[41] Abhinav Pathak, Y. Angela Wang, Cheng Huang, Al-
bert Greenberg, Y. Charlie Hu, Randy Kern, Jin Li, and

Keith W. Ross. Measuring and evaluating tcp splitting
for cloud services. In Proceedings of International Con-
ference on Passive and Active Measurement, 2010.

[42] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. In Proceedings of OSDI, 2014.

[43] W. Rahman, X. Lu, N. Islam, R. Rajachandrasekar, and
D. Panda. High-Performance Design of YARN MapRe-
duce on Modern HPC Clusters with Lustre and RDMA.
In Proceedings of IPDPS, 2015.

[44] Will Reese. Nginx: the high-performance web server
and reverse proxy. Linux Journal, 2008(173):2, 2008.

[45] Luigi Rizzo. netmap: A Novel Framework for Fast
Packet I/O. In Proceedings of USENIX Security Sympo-
sium, 2012.

[46] Marcel-Catalin Rosu and Daniela Rosu. An evaluation
of tcp splice benefits in web proxy servers. In Proceed-
ings of WWW, 2002.

[47] D. Shankar, X. Lu, N. Islam, W. Rahman, and D. Panda.
High-Performance Hybrid Key-Value Store on Modern
Clusters with RDMA Interconnects and SSDs: Non-
blocking Extensions, Designs, and Benefits. In Proceed-
ings of IPDPS, 2016.

[48] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and
Feifei Li. Fast and concurrent rdf queries with rdma-
based distributed graph exploration. In Proceedings of
OSDI, 2016.

[49] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The Hadoop Distributed File Sys-
tem. In Proceedings of MSST, 2010.

[50] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing

using rdma and htm. In Proceedings of SOPS, 2015.

http://fortune.com/2016/11/25/macys-black-traffic/
http://fortune.com/2016/11/25/macys-black-traffic/
https://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf

	Introduction
	Related work
	Overview of PostMan
	PostMan Design
	Assembling and disassembling packets
	PostMan library
	Adaptive batching

	Implementation
	Efficient helper
	Scalability and load balancing
	When to enable and disable helpers?

	Evaluation
	Effectiveness of PostMan
	Effects of packet size
	Performance of helper nodes
	Fault tolerance
	Adaptive batching

	Conclusion
	Acknowledgment

