Handling Flash Deals with Soft Guarantee in Hybrid Cloud

Yipei Niu¹, Fangming Liu¹, Xincai Fei¹, Bo Li²

Email: fmliu@hust.edu.cn

¹Huazhong University of Science & Technology ²The Hong Kong University of Science & Technology

What are flash deals?

Amazon Prime Day

- Prime Day is a one-day-only global shopping event
- New deals are released as often as every five minutes

New iPhones pre-order

iPhone 6 preorders were slated to start at midnight

WeChat red envelope

WeChat has offered virtual red envelope containing virtual manay that can be eached out

Flash deals offer benefits to subscribers within short time!

envelope and hence the money

Fast & Simple

Yet crowded

- Sales on Amazon's Prime Day exceeded Black Friday in 2014
- The times of shaking phones reached a total of 11 billion and a peak of 810 million per minute
- The pre-orders exceeded two million in the first 24
 - hours, making Apple Store unresponsive

How to handle such fast, simple, and crowded flash deals?

Is private cloud OK?

Private cloud

- Dedicated datacenter or server cluster
- Virtual resources provided by cloud providers

Private cloud solution

- Advantages
 - Enhanced security
 - Ultimate control
- Disadvantages
 - Limited capacity
 - Low scalability
 - Complex to operate

Private cloud

- Requirement of security
 Protect confidential data
- Requirement of performance
 - Maximum uptime
 - Fast page load time

To buy or To rent?

Hybrid cloud solution is a promising choice!

Is hybrid cloud enough?

- Revisit flash deals
 - Flash deals always bring benefits
 - Flash deals involve simple operations
- Postpone serving requests
 - Incentive to wait longer to get benefits
 - Serve partial requests instantly
 - Postpone serving others
- One example
 - Instead of waiting for the results returned from the application tier (1, 2, 3, 4, 5 in left)
 - Web servers send responses back to users (2 in right)
 - Guarantee the requests served asynchronously within deadline (3, 4 in right)

Hybrid cloud with soft guarantee

Problems

- Without prior knowledge of requests
- How to schedule requests
- How to adjust the scale of public cloud

Modeling flash deal applications

- Single-tier Architecture [1][2][3][4]
 - Request arrival follows Poison process
 - Service time is generally distributed
 - Model the application as an M/G/1/PS queue
 - Response time in queue

$$f^{ST}(\lambda) = \int_0^\infty \frac{x}{1-\rho} dF(x) = \frac{E[X]}{1-\rho}$$

- Multi-tier Architecture [5][6][7]
 - Lemma 1. the arrival rate $\lambda_{k+1} = \lambda_k$, when the queueing system is stable
 - Response time in queue

- Service degradation
 - Each message binds to a series of tasks
 - Classify messages into different priority classes $k \in \{1, 2, ..., K\}$
 - Model the asynchronous process as a priority queue

$$f^{AP}(\boldsymbol{\alpha}) = \frac{C\sum_{k=1}^{K} \alpha_k}{(1 - \sum_{k=1}^{K-1} \frac{\alpha_k}{\mu^{AP}})(1 - \sum_{k=1}^{K} \frac{\alpha_k}{\mu^{AP}})}$$

Evaluating response time

- Private cloud single tier
 - λ_t^V is the number of requests assigned to the private cloud during the tth time slot
 - Model flash deals in private cloud as single-tier architecture
 - Response time can be evaluated as $d_t^V = f^{ST}(\lambda_t^V)$
- Public cloud multi tier with soft guarantee
 - λ^U is the number of requests assigned to the public cloud during the tth time slot
 - Model flash deals in private cloud as multi-tier architecture
 - Interactive process

$$d_t^{IP}(\boldsymbol{\lambda}_t, \boldsymbol{\alpha}_t) = f^{MT}(\boldsymbol{\lambda}_t - \boldsymbol{\alpha}_t)$$

Asynchronous process

$$d_t^{SG}(\boldsymbol{\alpha}_t) = f^{AP}(\boldsymbol{\alpha}_t)$$

Hybrid cloud

Response time can be evaluated as

$$d_t^H = \frac{\lambda_t^V}{\lambda_t} d_t^V + \frac{\lambda_t^U}{\lambda_t} (d_t^{IP} + d_t^R) + \frac{\lambda_t - \lambda_t^V - \lambda_t^U}{\lambda_t} \cdot D$$

Capacity adjusting problem

- We set a budget b
- The number of EC2 instances a tenant can boot is $\, n$
- The decision on leasing n EC2 instances is $oldsymbol{x}_t^{(n)}$
- Performance-Cost ratio of leasing n EC2 instances

$$\pi_t^{(n)} = \frac{cap_t}{a_t \cdot n_t} = \frac{1}{a_t d_t^H J^T x_t^{(n)}}, J = (1, 2, ..., N)$$

Capacity adjusting algorithm

Define a partial linear problem on $\{0,s\}$, where $s = \epsilon m$ and $0 < \epsilon < 1$ The partial linear problem $\max \quad \sum_{t=0}^{s} \pi_t^T x_t$ s.t. $\sum_{t=0}^{s} \boldsymbol{c}_{t}^{T} \boldsymbol{x}_{t} \leq (1-\epsilon)\epsilon b,$ $\boldsymbol{x}_t \in K, t \in [0, s].$ The corresponding dual problem min $(1-\epsilon)\epsilon b \cdot p + \sum_{t=0}^{s} y_t$ s.t. $c_{tj} \cdot p + y_t \geq \pi_{tj}, j \in [1, N]$ $p, y_t \geq 0, t \in [0, s].$ ullet $(\hat{p}, \hat{oldsymbol{y}})$ represents the optimal solution to problem Decision on capacity adjustment

$$x_{tj}(p) = \begin{cases} 1, & \pi_{tj} > p \cdot c_{tj}, \\ 0, & \pi_{tj}$$

Capacity adjusting algorithm

- Two special cases a If $\pi_{tj} = p \cdot c_{tj}$ b If $\pi_{tj} - p \cdot c_{tj} = \pi_{tl} - p \cdot c_{tl}$
- The algorithm becomes ineffective
- Inspired by the existing literature [8][9], we make Assumption 1

Assumption 1. For any p, there can be at most l column of $\pi_t \in {\{\pi_i | i \in [1, m]\}}$, i.e., π_{tj} , such that $\pi_{tj} = p \cdot c_{tj}$ or $\pi_{tj} - p \cdot c_{tj} = \pi_{tl} - p \cdot c_{tl}$.

Summary of capacity adjusting algorithm

Optimality analysis

- Q1: is $x_t(p^*)$ the same to x_t^* ? Lemma 2. For all $t \in [0, m]$, under Assumption 1, $x_t(p^*)$ and x_t^* differs no more than 1 value of t.
- Q2: is $\boldsymbol{x}_t(\hat{p})$ accurate enough as a substitute to $\boldsymbol{x}_t(p^*)$? Lemma 3. The primal solution derived using sample dual price \hat{p} is a feasible solution to the linear problem with high probability of $1 - \epsilon$ that

 $\sum_{t=1}^{m} c_t^T x_t(\hat{p}) \le b$, given that $b \ge \frac{3m \ln(N/\epsilon)}{\epsilon^3}$

- Q3: how much is the gap between $oldsymbol{x}_t(\hat{p})\,$ and $oldsymbol{x}_t^*\,$?

Lemma 4. The primal solution constructed using sample dual price \hat{p} is a near-optimal solutions to the linear problem with high probability of $1 - \epsilon$ that

 $\sum_{t=1}^{m} \pi_t^T x_t(\hat{p}) \ge (1 - 3\epsilon) OPT$, given that $b \ge \frac{3m \ln(N/\epsilon)}{\epsilon^3}$

• Q4: how much is the gap between OPT and the algorithm? **Proposition 1.** For any $\epsilon > 0$, the Capacity-Adjusting Algorithm is $1 - 6\epsilon$ competitive for the online linear problem

Evaluation

Real world trace

 Online traffic in U.S. on Cyber Monday measured by Akamai

Testbed

- A private cloud on two servers with OpenStack Mitaka
- A public cloud 20 EC2 large type instances on AWS

Implementation

- □ The web tier is deployed by an Apache HTTP server
- Two Tomcat 9.0 servers as the application tier,
- Use HttpClient 4.5.2 to generate requests
- A Servlet querying records of a table from a MySQL database

Evaluation

- Obviously, scheduling more requests to the asynchronous process can reduce response time remarkably
- The response time of the asynchronous process can be controlled within predefined deadline

Evaluation

Fig. 13. PC and BC ratios of CAA and CEOA.

 Compared with CEOA, CAA reduces response time by 15% and improves the PC ratio by 19% on average, respectively

Conclusion

- We proposed a solution for flash deal applications to withstand flash crowds in a hybrid cloud
- Concerning scheduling requests, we achieved fast response time of the interactive process as well as guaranteed requests served in the asynchronous process within a predefined deadline
- In terms of adjusting capacity, we tuned scale of the public cloud with the objectives of performance-cost ratio maximization as well as outsourcing cost minimization.
- Compared with previous work, our solution reduced response time by 15% on average and effectively maintained cost within the budget.

Reference

No.	Paper	Source
[1]	Modeling differentiated services of multi-tier web applications	MASCOTS06
[2]	Preserving qos of e- commerce sites through self-tuning: A performance model approach	EC '01
[3]	Autonomous resource provisioning for multi-service web applications	WWW'10
[4]	Provisioning Servers in the Application Tier for E-commerce Systems	IWQoS'04
[5]	Agile dynamic provisioning of multi-tier internet applications	TAAS
[6]	Con- trolling quality of service in multi-tier web applications	ICDCS'06
[7]	An analytical model for multi-tier internet services and its applications	SIGMETRICS'05
[8]	The adwords problem: Online keyword matching with budgeted bidders under random permutations	EC'05
[9]	A dynamic near-optimal algorithm for online linear programming	Operations research

Thank You!

"Cloud Datacenter & Green Computing" Research Group Huazhong University of Science & Technology

> http://grid.hust.edu.cn/fmliu/ fmliu@hust.edu.cn