When Hybrid Cloud Meets Flash Crowd: Towards Cost-Effective Service Provisioning

Yipei Niu¹, Bin Luo¹, Fangming Liu¹, Jiangchuan Liu², Bo Li³

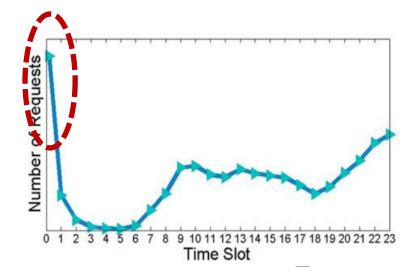
Email: fmliu@hust.edu.cn

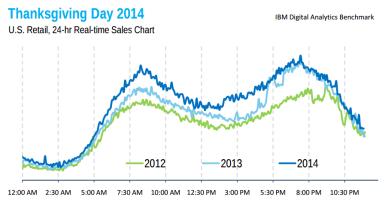
¹Huazhong University of Science & Technology ²Simon Fraser University ³The Hong Kong University of Science & Technology

E-commerce miracle in promotion seasons

During promotion seasons

E-commerce websites offer attractive discounts.


Alibaba claims:


- The GMV (gross merchandise volume) on Nov. 11, 2013 is \$5.8 billion
- The GMV on Nov. 11 reaches \$9.3 billion in 2014
- In the U.S.
- Online sales exceeds \$1 billion on Thanksgiving Day
- Online sales passes \$1.5 billion on Black Friday

Source:

http://techcrunch.com/2014/12/01/u-s-thanksgiving-black-friday-sales-break-1b-total-holiday-spend-online-will-be-89b/ 2 http://www.alizila.com/alibabas-24-hour-online-sale-rakes-over-9-billion-gmv

Are e-commerce websites excited?

Time of Day (PST)

Online sales peaked in the morning and again in the evening on Thanksgiving. Online shopping began to pick up earlier (around 1:45 p.m. PST) than in 2013 leading up to the evening peak time of 7:30 p.m. PST. Online sales grew 14.3% over 2013.

During Double Eleven Shopping Festival

- 13.7 million buyers simultaneously visited Tmall in 2013
- 340,000 orders were placed during the first minute in 2013
- 15,000 online transactions per second at the peak in 2013
- 47,500 payment transactions per second at the peak in 2014

E-commerce websites have to face bursty, immense, and unpredictable flash crowds brought by promotion seasons

Why e-commerce websites headache?

BestBuy.com Crashes on Black Friday in 2014

可用率变化曲线图

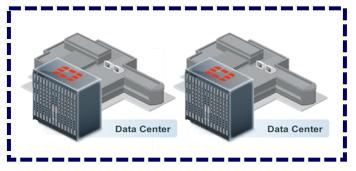
15:00

20:00

- On Friday morning, BestBuy.com went offline.
- Around 11:30 a.m., the site was back online, after approximately 1.5 hours offline

Vancl is unavailable on shopping festival

- On Nov.11, 2014, most e-commerce websites have the availability of 100%.
- However, only Vancl outraged three times, 20 minutes unavailability in total.


Is private cloud OK?

Private cloud

- Dedicated datacenter or server cluster
- Virtual resources provided by cloud providers

Private cloud solution

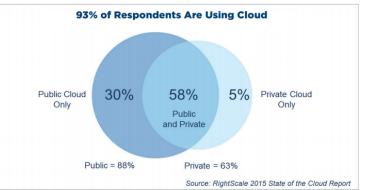
- Advantages
 - Enhanced security
 - Ultimate control
- Disadvantages
 - Limited capacity
 - Low scalability
 - Complex to operate

Private cloud

- Requirement of security
 Protect confidential data
- Requirement of performance
 - Maximum uptime
 - Fast page load time

How to increase capacity and improve scalability?

To buy or To rent?



Hybrid cloud solution is a wise choice!

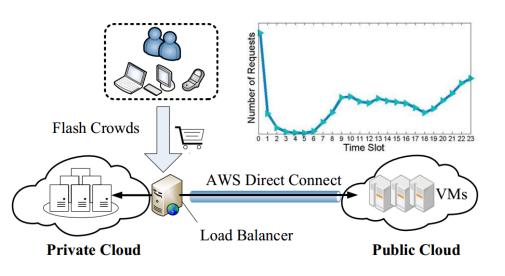
Castle in the air?

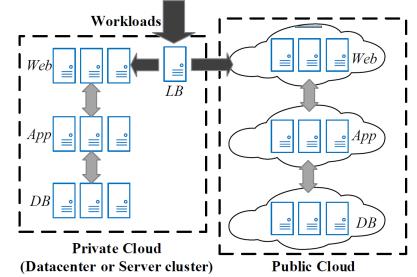
Hybrid cloud solution is promising and popular

- 82% of enterprises have a hybrid cloud strategy, up from 74 percent in 2014
- 58% of respondents are using hybrid cloud

 Hybrid cloud solution is already leveraged to handle peak or normal traffic.

Alibaba


- 75% orders were processed by Alibaba cloud on Nov. 11, 2013
- 96% orders were processed by Alibaba cloud on Nov. 11, 2014

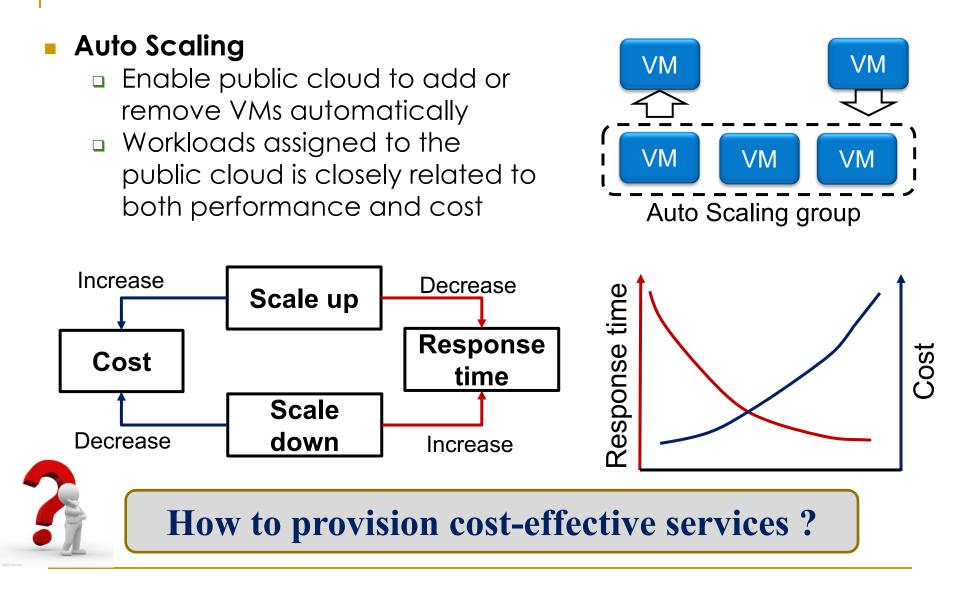

Ebay

- 95% of eBay traffic is powered by its OpenStack cloud in 2014.
- It was zero in 2011.

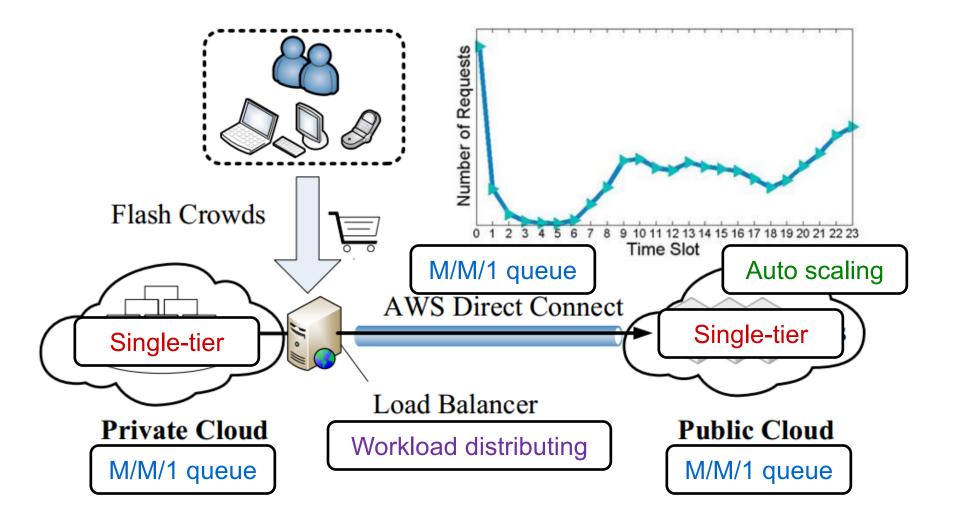
Source: <u>http://www.computerweekly.com/news/2240222899/Case-study-How-eBay-uses-its-own-OpenStack-private-cloud</u>

Own the base & Rent the peak

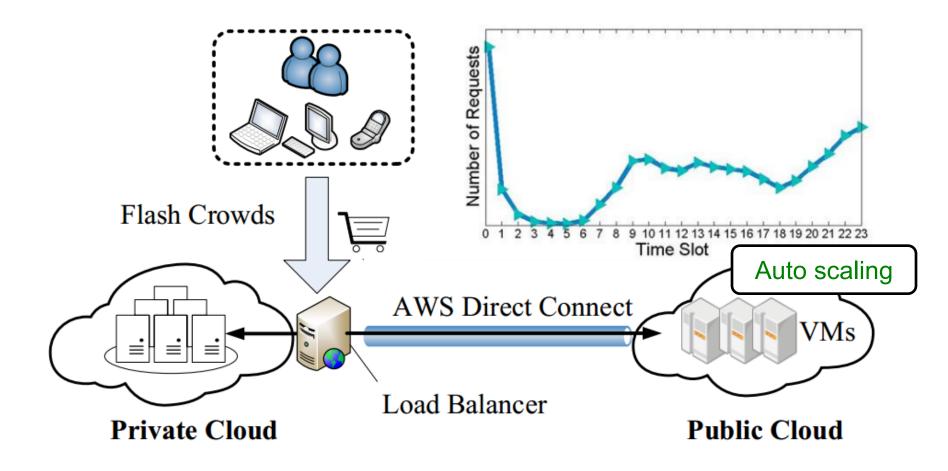
- Challenges
 - Workload distributing
 - Public cloud scaling


Architecture

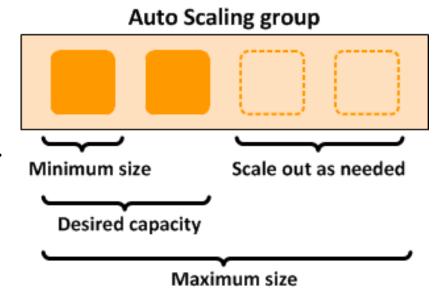
 Three tiers both in private and public clouds


Advantages

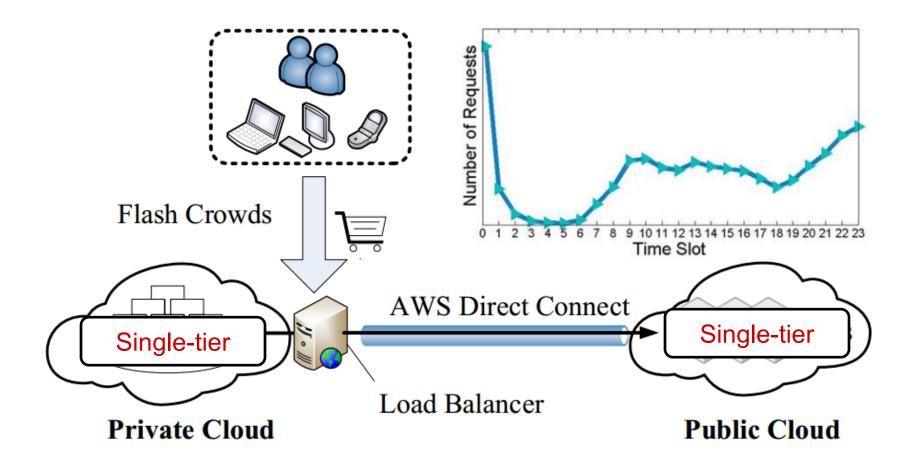
- High flexibility
- Easy to adopt hybrid cloud


Trade-off between performance & cost in hybrid cloud

Overview of system model

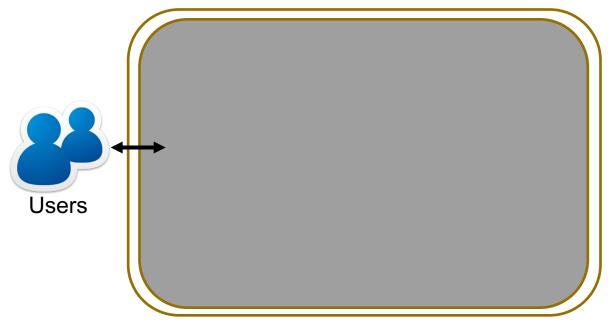


Modeling auto scaling


Auto scaling in public cloud

- Auto scaling
 - Allow users to scale public cloud capacity up or down automatically according to defined metric of performance.
 - Number of once scaling
 - Scaling up: m
 - Scaling down: n
 - Monitored metric
 - CPU utilization

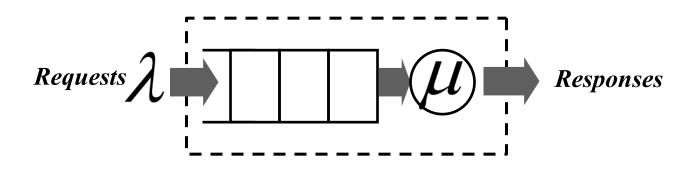
$$S(t) = \begin{cases} m, & \alpha(t) \ge \alpha_u \\ 0, & \alpha_d \le \alpha(t) \le \alpha_u \\ -n, & \alpha(t) < \alpha_d \end{cases}$$


Modeling websites

Single-tier architecture

Assumption

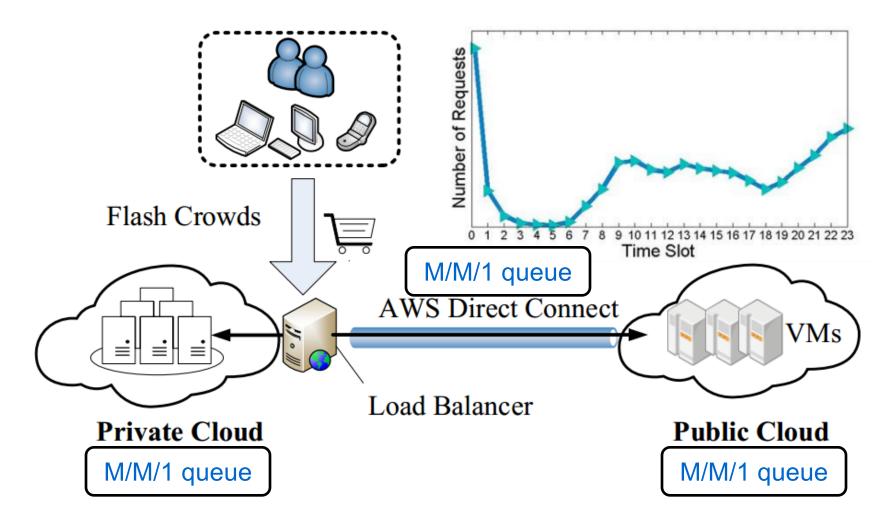
□ The architecture of website is single-tier.

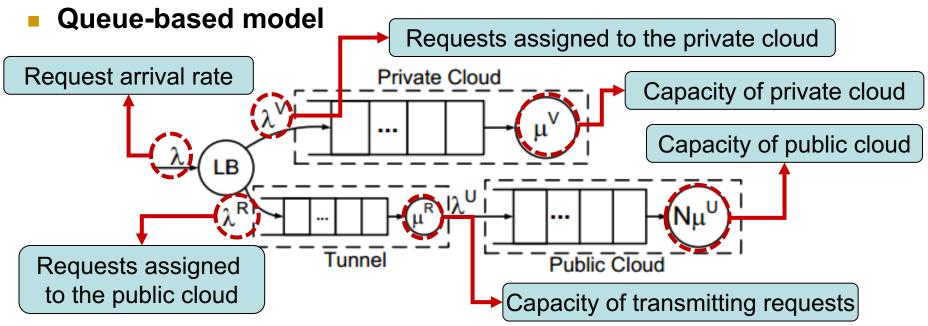

Single-tier architecture [4]

Encapsulates all the functionalities in the website

Single-tier architecture

Assumption


• The architecture of website is single-tier.


Modelling

- Assumptions
 - Request arrival process is a Poisson process [1] [3]
 - Request serving time is exponential distribution [1] [2]
- M/M/1 queue [2]

Evaluating Performance & Cost

Evaluating response time in hybrid cloud

Little's Law

Evaluating average response time

$$D^{R}(t) = \frac{1}{\mu^{R}(t) - \lambda^{R}(t)}$$

$$D^{U}(t) = \frac{1}{N(t)\mu^{U} - \lambda^{U}(t)}$$

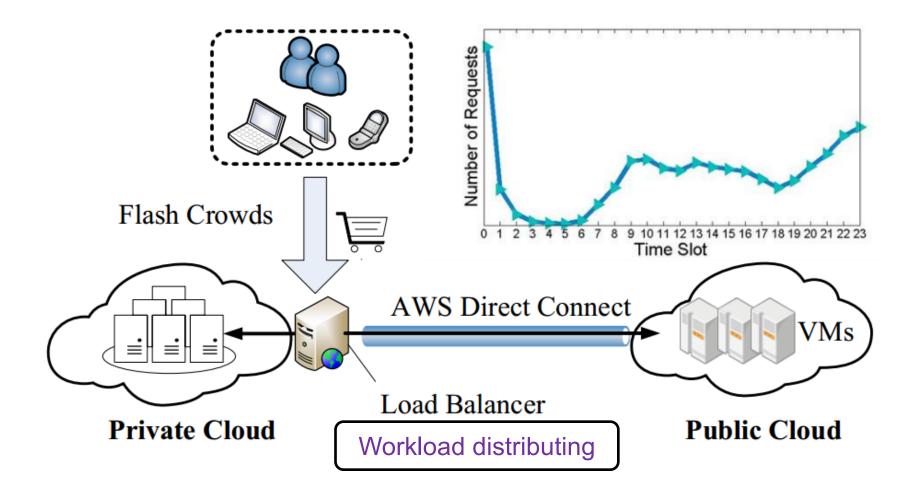
$$D^{V}(t) = \frac{1}{\mu^{V} - \lambda^{V}(t)}$$

$$D^{V}(t) = \frac{1}{\mu^{V} - \lambda^{V}(t)}$$

Calculating cost in hybrid cloud

Cost = Cost of tunnel + Cost of VMs

Level	1	2	3	4	5	6	7	
Bandwidth (Mbps)	50	100	200	300	400	500	10,000	
Price (\$/hour)	0.03	0.06	0.12	0.18	0.24	0.30	2.25	


Levels of available tunnel

• Cost of tunnel
$$K(t) = \sum_{l=0}^{L} k_l x_l(t)$$

Price of AWS EC2 instance

Туре	vCPU	ECU	Memory	Usage	
M2.2xlarge	8	26	30GB	\$0.56/Hour	
Cost of V	/Ms $I(t)$	=AN(t)			

How to distribute workloads?

Problem formulation

- To control cost, we introduce a time-averaged budget *M*.
- Problem

Online, NP-hard and non-linear

$$\begin{array}{ll} \min & \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} D(t) & \text{Minimize response time} \\ \text{s.t.} & \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} (AN(t) + AS(t) + \sum_{l=0}^{L} k_l x_l(t) & \text{Control cost under budget} \\ & \lambda(t) = \lambda^V(t) + \lambda^R(t) & \text{Workload distributing} \\ & \lambda^U(t) < N(t) \mu^U & \\ & \lambda^R(t) < \mu^R(t) & \text{Ensure the traffic intensity is below 1} \\ & \lambda^V(t) < \mu^V & \end{array}$$

How to minimize response time & control cost?

To measure how much the cost exceeds the budget, we introduce Q(t).

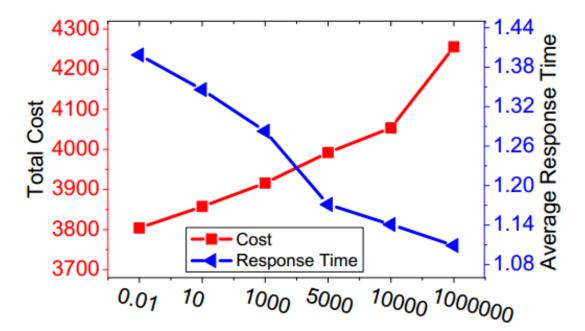
- Like a queue, with "cost" coming and "budget" leaving.
- Lyapunov optimization approach can address it
 - Combines response time and cost.
 - Introduces a V can be used to determine which part we want to emphasize.

min
$$VD(t) + Q(t)(AS(t) + \sum_{l=0}^{L} k_l x_l(t) + AN(t) - M)$$

Optimality analysis

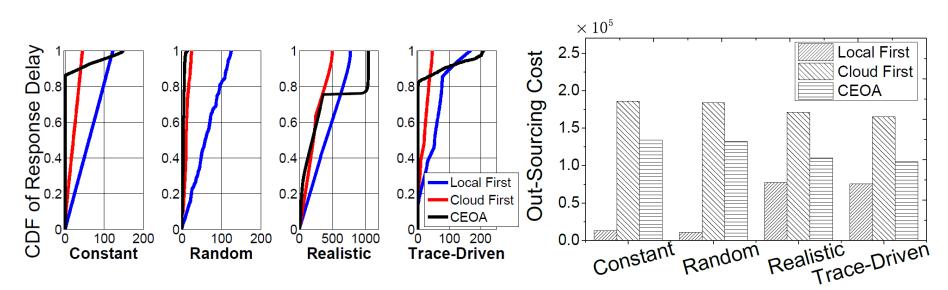
Based on the constraint, there must exist a positive ϵ , which can transform the constraint to the following form:

$$\mathbb{E}\{AN(t) + AS(t) + \sum_{l=0}^{L} k_l x_l(t)\} \le M - \epsilon_l$$


 By applying P* to Drift-Plus-Performance, and summing up it over time slots, and then dividing both sides by T, we have

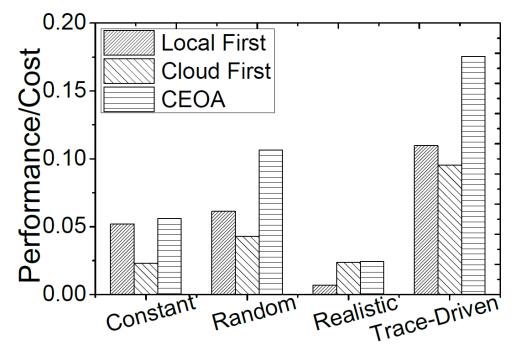
$$\frac{V}{T}\sum_{t=0}^{T-1} D(t) + \frac{L(Q(T)) - L(Q(0))}{T} \le B + VP^* - \frac{\epsilon}{T}\sum_{t=0}^{T-1} Q(t)$$

• Making $T o \infty$, as a result, $\frac{L(Q(T)) - L(Q(0))}{T} = 0$


Note that
$$\frac{V}{T} \sum_{t=0}^{T-1} D(t) > 0$$
, we have $\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} Q(t) \le \frac{B + VP^*}{\epsilon}$
Note that $-\frac{\epsilon}{T} \sum_{t=0}^{T-1} Q(t) < 0$, we have $\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} D(t) \le \frac{B}{V} + P^*$

Tradeoff between performance and cost

- By tuning the value of V to a small one, we observe that the average response time is large while the outsourcing cost is small.
- Meanwhile, by setting a large value of V, it brings markedly increase of the outsourcing cost and decrease of the average response time.
- When the average response time drops, the outsourcing cost grows remarkably.


Performance & Cost

- "Cloud first" strategy provisions the best services while "Local first" strategy provisions the worst services
- CEOA is searching the balancing point of service quality between those two baseline solutions

- The outsourcing cost of the "local first" strategy is the minimum
- The outsourcing cost of the "cloud first" strategy is the maximum
- The cost of CEOA is between the two baseline solutions.

Performance-Cost ratio

- The "local first" strategy is the most economic
- The "cloud first" strategy helps the website provision the best services
- CEOA has the largest performance cost ratio.

CEOA, i.e., our solution, enables the website to provision cost-effective services

Conclusion

- We design an online algorithm to help an e-commerce website provision cost-effective services.
- By applying Lyapunov optimization approach, our online algorithm can
 - make real time decision on how to offload workloads from a private cloud.
 - prove our online algorithm can approach a dedicated [O(1/V), O(V)] tradeoff between outsourcing cost and average response time.
- Through simulations with empirical real e-commerce PV trace, we demonstrated the effectiveness of our solution

Reference

No.	Paper	Source
[1]	An analytical model for multi-tier internet services and its applications	SIGMETRICS '05
[2]	Performance Guarantees for Web Server End-Systems: A Control-Theoretical Approach	TPDS'02
[3]	Wide area traffic: the failure of Poisson modeling	ToN'95
[4]	Provisioning Servers in the Application Tier for E-commerce Systems	IWQoS'04

Thank You!

"Cloud Datacenter & Green Computing" Research Group Huazhong University of Science & Technology

> <u>http://grid.hust.edu.cn/fmliu/</u> <u>fmliu@hust.edu.cn</u>